Milad Alshomary

Milad Alshomary, M. Sc.
Adresse
Appelstraße 9a
30167 Hannover
Gebäude
Raum
Milad Alshomary, M. Sc.
Adresse
Appelstraße 9a
30167 Hannover
Gebäude
Raum

Research Interests

I am a PhD candidate and research assistant at the NLP group at the Artificial Intelligence Institute in Hannover. I studied a bachelor of computer science at Damascus University from 2007 to 2012 and finished my master's at Bauhaus University in the faculty of Computer Science and Digital Media. In my Ph.D., I work on computationally modeling argument generation and how synthesizing arguments in natural language texts. Besides studying computational argumentation, I also focus on studying explanation dialogues and how to model their quality.

Publications

Zeige Ergebnisse 1 - 20 von 26

Alshomary M, Lange F, Booshehri M, Sengupta M, Cimiano P, Wachsmuth H. Modeling the Quality of Dialogical Explanations. in Calzolari N, Kan MY, Hoste V, Lenci A, Sakti S, Xue N, Hrsg., 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings. European Language Resources Association (ELRA). 2024. S. 11523-11536. (2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings). doi: 10.48550/arXiv.2403.00662
Mehr...
Chen WF, Alshomary M, Stahl M, Al Khatib K, Stein B, Wachsmuth H. Reference-guided Style-Consistent Content Transfer. in Calzolari N, Kan MY, Hoste V, Lenci A, Sakti S, Xue N, Hrsg., 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings. European Language Resources Association (ELRA). 2024. S. 13754-13768
Mehr...
El Baff R, Khatib KA, Alshomary M, Konen K, Stein B, Wachsmuth H. Improving Argument Effectiveness Across Ideologies using Instruction-tuned Large Language Models. in Al-Onaizan Y, Bansal M, Chen YN, Hrsg., Findings of the Association for Computational Linguistics: EMNLP 2024. Miami, Florida, USA: Association for Computational Linguistics. 2024. S. 4604-4622 doi: 10.18653/v1/2024.findings-emnlp.265
Mehr...
Feldhus N, Anagnostopoulou A, Wang Q, Alshomary M, Wachsmuth H, Sonntag D et al. Towards Modeling and Evaluating Instructional Explanations in Teacher-Student Dialogues. in Proceedings of the 2024 International Conference on Information Technology for Social Good. New York, NY, USA: Association for Computing Machinery. 2024. S. 225–230 doi: 10.1145/3677525.3678665
Mehr...
Kiesel J, Çöltekin Ç, Heinrich M, Fröbe M, Alshomary M, De Longueville B et al. Overview of Touché 2024: Argumentation Systems. in Goharian N, Tonellotto N, He Y, Lipani A, McDonald G, Macdonald C, Ounis I, Hrsg., Advances in Information Retrieval - 46th European Conference on Information Retrieval, ECIR 2024, Proceedings. Springer Science and Business Media Deutschland GmbH. 2024. S. 466-473. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.1007/978-3-031-56069-9_64
Mehr...
Mirzakhmedova N, Kiesel J, Alshomary M, Heinrich M, Handke N, Cai X et al. The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments. in Calzolari N, Kan MY, Hoste V, Lenci A, Sakti S, Xue N, Hrsg., Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Torino, Italia: ELRA and ICCL. 2024. S. 16121-16134
Mehr...
Alshomary M, Wachsmuth H. Conclusion-based Counter-Argument Generation. in EACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference. Association for Computational Linguistics (ACL). 2023. S. 957-967 Epub 2023 Jan 24. doi: 10.48550/arXiv.2301.09911
Mehr...
Kiesel J, Alshomary M, Mirzakhmedova N, Heinrich M, Handke N, Wachsmuth H et al. SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments. in Ojha AK, Doğruöz AS, Da San Martino G, Madabushi HT, Kumar R, Sartori E, Hrsg., Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023). Association for Computational Linguistics (ACL). 2023. S. 2287-2303 doi: 10.18653/V1/2023.SEMEVAL-1.313
Mehr...
Alshomary M, Stahl M. Argument Novelty and Validity Assessment via Multitask and Transfer Learning. in Proceedings of the 9th Workshop on Argument Mining. 2022. S. 111-114
Mehr...
Alshomary M, Rieskamp J, Wachsmuth H. Generating Contrastive Snippets for Argument Search. in Toni F, Polberg S, Booth R, Caminada M, Kido H, Hrsg., Computational Models of Argument: Proceedings of COMMA 2022. Amsterdam: IOS Press. 2022. S. 21-31. (Frontiers in Artificial Intelligence and Applications). doi: 10.3233/FAIA220138
Mehr...
Alshomary M, El Baff R, Gurcke T, Wachsmuth H. The Moral Debater: A Study on the Computational Generation of Morally Framed Arguments. in Muresan S, Nakov P, Villavicencio A, Hrsg., Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers. Association for Computational Linguistics (ACL). 2022. S. 8782 - 8797. (Proceedings of the Annual Meeting of the Association for Computational Linguistics). doi: 10.48550/arXiv.2203.14563, 10.18653/v1/2022.acl-long.601
Mehr...
Kiesel J, Alshomary M, Handke N, Cai X, Wachsmuth H, Stein B. Identifying the Human Values behind Arguments. in Muresan S, Nakov P, Villavicencio A, Hrsg., Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers. Association for Computational Linguistics (ACL). 2022. S. 4459 - 4471. (Proceedings of the Annual Meeting of the Association for Computational Linguistics). doi: 10.18653/v1/2022.acl-long.306
Mehr...
Sengupta M, Alshomary M, Wachsmuth H. Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning. in Proceedings of the 2022 Workshop on Figurative Language Processing. Association for Computational Linguistics (ACL). 2022. S. 137-142
Mehr...
Wachsmuth H, Alshomary M. "Mama Always Had a Way of Explaining Things So I Could Understand": A Dialogue Corpus for Learning How to Explain. in Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju: International Committee on Computational Linguistics. 2022. S. 344 - 354 doi: 10.48550/arXiv.2209.02508
Mehr...
Wachsmuth H, Alshomary M. “Mama Always Had a Way of Explaining Things So I Could Understand”: A Dialogue Corpus for Learning to Construct Explanations. in 2022 Proceedings - International Conference on Computational Linguistics, COLING. 1 Aufl. Band 29. 2022. S. 344-354. (Proceedings - International Conference on Computational Linguistics, COLING (Online)).
Mehr...
Alshomary M, Chen WF, Gurcke T, Wachsmuth H. Belief-based Generation of Argumentative Claims. in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Association for Computational Linguistics (ACL). 2021. S. 224-233 doi: 10.48550/arXiv.2101.09765, 10.18653/v1/2021.eacl-main.17
Mehr...
Alshomary M, Syed S, Dhar A, Potthast M, Wachsmuth H. Counter-Argument Generation by Attacking Weak Premises: Counter-Argument Generation by Attacking Weak Premises. in Zong C, Xia F, Li W, Navigli R, Hrsg., Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Association for Computational Linguistics (ACL). 2021. S. 1816-1827 doi: 10.18653/v1/2021.findings-acl.159
Mehr...
Alshomary M, Gurke T, Syed S, Heinisch P, Spliethöver M, Cimiano P et al. Key Point Analysis via Contrastive Learning and Extractive Argument Summarization. in Proceedings of The 8th Workshop on Argument Mining,. Association for Computational Linguistics (ACL). 2021. S. 184-189
Mehr...
Alshomary M, Wachsmuth H. Toward audience-aware argument generation. Patterns. 2021 Jun;2(6):100253. doi: 10.1016/j.patter.2021.100253
Mehr...
Gurcke T, Alshomary M, Wachsmuth H. Assessing the Sufficiency of Arguments through Conclusion Generation. in 8th Workshop on Argument Mining, ArgMining 2021 - Proceedings. Punta Cana: Association for Computational Linguistics (ACL). 2021. S. 67-77 doi: 10.48550/arXiv.2110.13495
Mehr...