Details zu Publikationen

Reference-guided Style-Consistent Content Transfer

verfasst von
Wei Fan Chen, Milad Alshomary, Maja Stahl, Khalid Al Khatib, Benno Stein, Henning Wachsmuth
Abstract

In this paper, we introduce the task of style-consistent content transfer, which concerns modifying a text's content based on a provided reference statement while preserving its original style. We approach the task by employing multi-task learning to ensure that the modified text meets three important conditions: reference faithfulness, style adherence, and coherence. In particular, we train three independent classifiers for each condition. During inference, these classifiers are used to determine the best modified text variant. Our evaluation, conducted on hotel reviews and news articles, compares our approach with sequence-to-sequence and error correction baselines. The results demonstrate that our approach reasonably generates text satisfying all three conditions. In subsequent analyses, we highlight the strengths and limitations of our approach, providing valuable insights for future research directions.

Organisationseinheit(en)
Fachgebiet Maschinelle Sprachverarbeitung
Institut für Künstliche Intelligenz
Externe Organisation(en)
Rheinische Friedrich-Wilhelms-Universität Bonn
Reichsuniversität Groningen
Bauhaus-Universität Weimar
Typ
Aufsatz in Konferenzband
Seiten
13754-13768
Anzahl der Seiten
15
Publikationsdatum
2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik, Theoretische Informatik und Mathematik, Angewandte Informatik