Details zu Publikationen

The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments

verfasst von
Nailia Mirzakhmedova, Johannes Kiesel, Milad Alshomary, Maximilian Heinrich, Nicolas Handke, Xiaoni Cai, Valentin Barriere, Doratossadat Dastgheib, Omid Ghahroodi, MohammadAli SadraeiJavaheri, Ehsaneddin Asgari, Lea Kawaletz, Henning Wachsmuth, Benno Stein
Abstract

While human values play a crucial role in making arguments persuasive, we currently lack the necessary extensive datasets to develop methods for analyzing the values underlying these arguments on a large scale. To address this gap, we present the Touché23-ValueEval dataset, an expansion of the Webis-ArgValues-22 dataset. We collected and annotated an additional 4780 new arguments, doubling the dataset`s size to 9324 arguments. These arguments were sourced from six diverse sources, covering religious texts, community discussions, free-text arguments, newspaper editorials, and political debates. Each argument is annotated by three crowdworkers for 54 human values, following the methodology established in the original dataset. The Touché23-ValueEval dataset was utilized in the SemEval 2023 Task 4. ValueEval: Identification of Human Values behind Arguments, where an ensemble of transformer models demonstrated state-of-the-art performance. Furthermore, our experiments show that a fine-tuned large language model, Llama-2-7B, achieves comparable results.

Organisationseinheit(en)
Institut für Künstliche Intelligenz
Fachgebiet Maschinelle Sprachverarbeitung
Typ
Aufsatz in Konferenzband
Seiten
16121-16134
Anzahl der Seiten
14
Publikationsdatum
01.05.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
Elektronische Version(en)
https://aclanthology.org/2024.lrec-main.1402/ (Zugang: Unbekannt)