Details zu Publikationen

Conclusion-based Counter-Argument Generation

verfasst von
Milad Alshomary, Henning Wachsmuth
Abstract

In real-world debates, the most common way to counter an argument is to reason against its main point, that is, its conclusion. Existing work on the automatic generation of natural language counter-arguments does not address the relation to the conclusion, possibly because many arguments leave their conclusion implicit. In this paper, we hypothesize that the key to effective counter-argument generation is to explicitly model the argument's conclusion and to enforce that the stance of the generated counter is opposite to that conclusion. In particular, we propose a multitask approach that jointly learns to generate both the conclusion and the counter of an input argument. The approach employs a stance-based ranking component that selects the counter from a diverse set of generated candidates whose stance best opposes the generated conclusion. In both automatic and manual evaluation, we provide evidence that our approach generates more relevant and stance-adhering counters than strong baselines.

Organisationseinheit(en)
Institut für Künstliche Intelligenz
Typ
Aufsatz in Konferenzband
Seiten
957-967
Anzahl der Seiten
11
Publikationsdatum
2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik und Mathematik, Software, Linguistik und Sprache
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2301.09911 (Zugang: Offen)