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Learning Objectives

Concepts

• Multi-head self-attention
• Building blocks of transformers
• Contextual embeddings
• Masked language modeling

Methods

• Left-to-right transformers for text generation
• Bidirectional transformers for text classification and sequence labeling
• Encoder-decoder transformers for sequence-to-sequence generation
• Instruction fine-tuning and alignment of large language models
• Prompting and sampling strategies for large language models

Tasks

• Language modeling and text summarization
• Sentiment analysis and part-of-speech tagging
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Outline of the Course
I. Overview

II. Basics of Data Science

III. Basics of Natural Language Processing

IV. Representation Learning

V. NLP using Clustering

VI. NLP using Classification and Regression

VII. NLP using Sequence Labeling

VIII. NLP using Neural Networks

IX. NLP using Transformers
• Introduction
• Left-to-Right Transformers
• Bidirectional Transformers
• Encoder-Decoder Transformers
• Large Language Models
• Conclusion

X. Practical Issues
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Introduction



Transformers

Limitations of long-short term memories (LSTMs)

• LSTMs may still struggle with modeling long-term dependencies, since
their memory is limited by the size of the hidden layer.

• Moreover, their sequential nature leaves few room for parallelization.

Idea of transformers

• A technique for sequence processing without recurrent connections
• Self-attention models relations of words over long distances

by using information from large contexts.

Transformer neural network

• A block-wise architecture of multilayer networks
that combines self-attention layers with other
network architecture concepts

• Input. An embedding sequence X=(x1, . . . ,xn)

• Output. An embedding sequence Y =(y1, . . . ,yk)
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Transformers
Basic Concepts

Transfer learning

• Transformers acquire knowledge from unsupervised tasks and apply it
to more easily solve other (supervised) tasks

• Pretraining. Learn a general transformer model from huge data
• Fine-tuning. Adjust the model to perform some downstream task

Contextual embeddings

• Transformers embed a word w based on the context of the given text.
• Different contexts lead to different embeddings of w.

Transformer architectures

• Different transformers are used for encoding and/or decoding text:
• Left-to-right. Mimics sequential text processing, usually for decoding
• Bidirectional. Allows processing a full text at a time, only for encoding
• Encoder-decoder. Combines both architectures
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Transformers
Transformers in NLP

Transformers for generation tasks

• Transformers are designed for decoding/generation.

• A left-to-right or encoder-decoder transformer can be
pretrained to work as a language model.

• Task-specific outputs are modeled as input endings.

• Examples. Language modeling, text summarization

We spent one night at 
that hotel. Staff at the 
front desk was very 
nice, the room was 
clean and cozy, and the 
hotel lies in the city 
center... but all this 
never justifies the price, 
which is outrageous!

Nice and central hotel 
but outrageous price

Transformers for analysis tasks

• Transformers can also be used for text classification,
sequence labeling, and similar tasks.

• A pretrained encoder can be combined with an FNN,
a CRF, or similar, and then fine-tuned on the task.

• This may drastically reduce the need for labeled data.

• Examples. Sentiment analysis, part-of-speech tagging

We spent one night at 
that hotel. Staff at the 
front desk was very 
nice, the room was 
clean and cozy, and the 
hotel lies in the city 
center... but all this 
never justifies the price, 
which is outrageous!

negative
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Transformers
From Transformers to Large Language Models

Impact of transformers

• The transformer architecture is state of the art in most NLP tasks.
• So far, all common large language models are transformer-based.
• Still, task-specific adaptations are often helpful.

Large language model (LLM)

• A language model, usually with billions of parameters
• Special training steps make LLMs instruction-following.
• Leading LLMs answer reasonably to most prompts.

But they may create hallucinations and bias (see Lecture Part X).

We spent one night at 
that hotel. Staff at the 
front desk was very 
nice, the room was 
clean and cozy, and the 
hotel lies in the city 
center... but all this 
never justifies the price, 
which is outrageous!

Location, rooms, and 
service are all great.

Tell me the top aspects 
in one sentence: 

Additional concepts of LLMs

• Training process. Instruction fine-tuning, alignment, and more
• Input handling. Prompting strategies and methods
• Ouput handling. Sampling strategies during output generation

Statistical NLP IX Transformers © Wachsmuth 2025 8



Left-to-Right Transformers



Left-to-Right Transformers

Self-attention layer h(A)

• A specific type of hidden layer that maps a sequence X =(x1, . . . ,xn) to
a sequence Y =(y1, . . . ,yn)

• The idea is to model each xj based on the context of the other inputs.
• This allows learning which inputs are relevant to which others.

Left-to-right self-attention

• When processing xj, h(A) has access
to all xk with k  j, but not with k > j.

• This enables the transformers to do
autoregressive generation. x1 x2 xn

y1 y2 yn

…

…

…
Self-

attention
layer

h(A) h(A) h(A)

Computational efficiency

• The computation performed for xj is independent of those for other xk.
• Thus, training and inference of self-attention layers can be parallelized.
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Left-to-Right Transformers
Self-Attention Layers: Input Representation

Modeling relevance in context

• The core of (left-to-right) self-attention is to score the relevance of all
inputs xk, k  j, for a given input xj.

• The scores are used to weight the influence of xk for the output yj of xj.
• In the processing of X, each xj takes on three different roles.

Roles of inputs

• Query (qj). xj is in the focus; all xk with k  j are compared to it
• Key (kj). xj is compared to any query ql = xl, l � j

• Value (vj). xj is a value used to compute the output yl, l � j

Representation of roles

• To represent xj in each of its roles, weight matrices are learned:
For vectors of length m (say, m = 1024), a matrix is of size m⇥m.

qj := W(Q) · xj kj := W(K) · xj vj := W(V ) · xj
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Left-to-Right Transformers
Self-Attention Layers: Output Computation

Score computation

• The relevance of xk for a focus xj is modeled as a similarity.
• Similarity is computed as the dot product between key kk and query qj:

score(xj,xk) := qj · kk

Weight computation

• Each score may range from �1 to 1, the larger the more similar.
• For normalization, it is often scaled based on the embedding length m.
• The scores for xj are then mapped to a vector of j weights ↵ij:

81  k  j : ↵jk := softmax
⇣score(xj,xk)p

m

⌘

Output computation

• Finally, the output yj of xj is the weighted sum of the values vk:

yj :=
jX

k=1

↵jk · vk
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Left-to-Right Transformers
Self-Attention Layers: Efficiency

Illustration of computing y3

x1 x2 x3

q1 k1 v1 q2 k2 v2 q3 k3 v3

y3

α31 α32 α33

Role
representation

Softmax
layer

Weighted
sum y3

Computational efficiency

• Each output yj 2 Y can be computed in parallel.
• Still, each self-attention layer compares all input pairs (xj,xk), which is

quadratic in the length of X.
• This makes self-attention very expensive for longer inputs.
• Standard transformer libraries limit the input length (e.g., to 512 tokens).
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Transformer Architecture

Transformer block
• A transformer consists of d � 1 stacked layer blocks (e.g., d = 12).
• Block. A self-attention layer h(A), a feedforward layer h(F ), both

with layer norm f and residual connections

Feedforward layer
• h(F ) transforms each token alone non-linearly.

x1 x2 xj

yj

…

Self-attention
layer

f

f

h(F)

h(A)

Feedworward
layer

Layer
norm

Layer
norm

Tr
an

sf
or

m
er

 b
lo

ck

Layer norm
• f normalizes the output of a layer h in a way

that is optimal for gradient-based training.
• It rescales h using mean µ and standard deviation �, and adds weights:

Notice: More recent transfomers put the layer norms before the layers.

f (h) := � · h� µ(h)

�(h)
+ �

Residual connection
• Passes information between two layers, skipping an intermediate layer:

z := f (x + h(A)) y := f (z + h(F ))
Statistical NLP IX Transformers © Wachsmuth 2025 14



Transformer Architecture
Multi-Head Self-Attention

Multi-head self-attention layer h(A)

• Words may relate to each other in various ways simultaneously.
• Transformers tackle this issue with multi-head self-attention layers: sets

of h � 1 self-attention layers at the same depth.

Head

• Each single self-attention layer
h(A)
l is called a head.

• Each h(A)
l has its own matrices

W(K)
l , W(Q)

l , and W(V )
l . x1 x2 xt…

h1
(A) h2

(A) hh
(A)…

yt

φLinear
projection

Heads (self-
att. layers)

Output computation

• The outputs of all heads are concatenated and reduced to the input
dimensionality using a linear projection � with weights W(�):

h(A) := �(h(A)
1 , . . . ,h(A)

h ) = (h(A)
1 � . . .� h(A)

h ) ·W(�)
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Transformer Architecture
Positional Embeddings

Modeling word order

• The order of words is modeled
by combining each embedding xj

with a positional embedding x(P )
j :

xj + x(P )
j

• x(P )
j is specific to the position j

of xj in the sequence X.

… … … … …

… … … … …

… … … … …

…

CookTim in was Cupertino
21 43 5

Ways to embed positions

• Learning. Learn to embed j on data up to some maximum position;
fewer training examples exist for later positions, though

• Static function. Map positions to embeddings in a way that captures
their inherent relationship.
For example, positions 1 and 2 should be more similar than position 1 and 10.
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Left-to-Right Transformers in NLP

Contextual autoregressive generation

• Prime the generation process using
the entire prior context, along with
the output at each time step.

• This idea is the key to the power of
transformer language models.

Output
(Softmax)

Transformer
block 1

spentWe nightone at hotelthat

y1 y3y2

that </s>hotel

………… ………

Transformer
block 6

Linear
projection

………

Transformers as language models

• Left-to-right transformers are trained to predict the
next word using teacher forcing.

• This way, each instance can be processed in parallel.

Example: Text summarization

• Input. A long(er) text, such as an article or review
• Output. A short(er) text, summarizing the main points

We spent one night at 
that hotel. Staff at the 
front desk was very 
nice, the room was 
clean and cozy, and the 
hotel lies in the city 
center... but all this 
never justifies the price, 
which is outrageous!

Nice and central hotel 
but outrageous price

Statistical NLP IX Transformers © Wachsmuth 2025 17



Left-to-Right Transformers in NLP
Text Summarization

Training

• Input. Training pairs of text (w1, . . . , wn) and summary (w0
1, . . . , w

0
k)

• Append each pair with a separator tag: (w1, . . . , wn,[sep], w0
1, . . . , w

0
k)

• Use these sequences as language
modeling instances.

Output
(Softmax)

Transformer
block 1

…spent !outrageous [sep] andNice

y1 y3y2

Nice centraland

………… ………

Transformer
block 6

Linear
projection

………

…We

…

Summary

Input
Inference

• Prime the model with an input text, followed by the tag [sep].
• In each step, the model has access to the text and previous outputs.
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Bidirectional Transformers

Limitations of left-to-right transformers

• By concept, left-to-right transformers can model prior context only.
• This is suboptimal for tasks such as classification or sequence labeling.

Bidirectional transformer (encoder)

• A transformer that maps from n input embeddings X = (x1, . . . ,xn) to n

output embeddings Y = (y1, . . . ,yn).
• For any xj, each self-attention layer h(A)

can access the whole X.
• Each yj defines a representation of xj

contextualized by the sequence X. x1 x2 xn

y1 y2 yn

…

…

…
Self-

attention
layer

h(A) h(A) h(A)

Usage for downstream tasks

• Bidirectional encoders can be pretrained self-supervised.
• For downstream tasks, extra layers are added and trained supervised.
• The encoder may be frozen or fine-tuned towards the task.
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Bidirectional Transformers
Contextualization

Self-attention layers

• Mostly, input representation and output computation of self-attention
are exactly as in left-to-right transformers.

• The key difference lies in the access to the whole input sequence X.

Subword tokenization

• Most implementations split tokens into subwords for further processing.
• This avoids unknown/rare word problems and reduces vocabulary size.
• Subwords range from a single character to a whole word.
• For tasks that need words, subwords are merged again.

Different methods exist for both splitting and merging, but are outside the scope here.

Computational efficiency

• As before, each output yj 2 Y can be computed in parallel.
• Still, both time and memory grow quadratically with the length of X.
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Bidirectional Transformers
Self-Supervised Training

Transformers as task solvers

• Due to the free access to X, bidirectional transformers are not trained
to predict next words (i.e., as a language model).

• Instead, they learn to solve tasks that can be trained self-supervised.

Self-supervised learning

• Self supervision refers to idea of creating training data automatically.
• A common method is to corrupt an input text and let a model recover it.
• Corruptions. Masking, reordering, substitution, deletion, ...

Common training tasks

• Masked language modeling. Predict missing words in a text.
For tasks such as coreference resolution, longer spans may be useful.

• Next sentence prediction. Decide if two sentences follow each other.
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Bidirectional Transformers
Masked Language Modeling

Masked language modeling (aka the cloze task)

• Given a sequence of words where one or more are missing (masked),
predict each missing word w̃.

______ Cook is the ______ of Apple.

• For each w̃, the probability distribution over the vocabulary is learned.

Training process

• Sample tokens from training sequences for learning.

• Prepare each token in one of three ways:

1. Mask it with a unique tag [mask].
2. Replace it with some vocabulary token,

chosen based on token probabilities
3. Leave it unchanged

• Learn to predict the original tokens.

… … … … …

… … … … …

… … … … …

[mask]Tim in was working
21 43 5

CookTim in was Cupertino
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Bidirectional Transformers
Example: BERT (Devlin et al., 2019)

Bidirectional Encoder Representations from Transformers (BERT)

• First bidirectional transformer model, published by Google
• 12 blocks, multi-head self-attention with 12 heads, 768 units per layer
• Subword vocabulary with 30,000 tokens

This all results in over 100M parameters (recent models are much larger).

Data basis of BERT

• Books Corpus. 0.8 billion words from book texts
• English Wikipedia. 2.5 billion words from articles

GPT-3 is trained on 470x as many words.
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Training of BERT

• Masked language modeling. 15% of all tokens in training sequences for
learning: 80% masked, 10% replaced, 10% left

• Next sentence prediction. 50% of training pairs positive, 50% negative
About 40 epochs on both tasks simultaneously until model convergence
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Bidirectional Transformers
Contextual Embeddings

Result of training

• Embedding model. A mapping from (sub)words to their embeddings
• Bidirectional encoder. A network that predicts contextual embeddings

for any input sequence

Contextual(ized) embedding

• A vector representation vj of some aspect of the meaning of a word wj

in the context of a sequence (w1, . . . , wj, . . . , wn)

• As static embeddings, such embeddings can be used for any task.

”tim cook is a ceo” ! vcook = (0.43, 0.52, 0.21, 0.19, . . . , 0.33)
”tim is a cook” ! vcook = (0.55, 0.01, 0.88, 0.18, . . . , 0.33)

What output to use?

• Final. Use the yj from the last transformer block
• Mixed. Average, or concatenate, the yj from multiple blocks (e.g., last 4)
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Birectional Transformers in NLP

Text classification

• A unique tag[cls] is prepended to all sequences (w1, . . . , wn) as w0,
both during pretraining and encoding.

• For w0, x0 thereby represents the entire sequence X = (x1, . . . ,xn).
• The output y0 of the final block is then input to an added classifier head.

Classifier head: A feedforward layer/network that predicts the class label.

Sequence labeling

• Each final output yj is mapped to its label probabilities using Softmax.
• Greedy. Simply use the most likely tag as the prediction.
• CRF. Input the label probabilities to a conditional random field head.

CRF head: A normal CRF that can take global label transitions into account.

Training

• The added heads are trained supervised on training data.
• The training loss can also be used to fine-tune the pretrained encoder.

Often, updating only the last few transformer blocks works best in practice.
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Birectional Transformers in NLP
Sentiment Analysis

Example: Sentiment analysis

• Input. A text sequence (w1, . . . , wn) with prepended tag w0 = [cls]

• Output. The probability distribution over all sentiment polarities
Shown here: Polarity with highest probability

Output
(Softmax)

Bidrectional
transf. block 1

[cls] spentWe

y0

negative

………

Bidrectional
transf. block 6

Feedforward
layer(s)

………

…

Polarity

Input outrageous

…

…

…

……
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Birectional Transformers in NLP
Part-of-speech tagging

Example: Part-of-speech tagging

• Input. A text sequence (w1, . . . , wn)

• Output. The probability distribution over all tags for each word wj

Output
(Softmax)

Bidrectional
transf. block 1

We onespent

y1

PRP

………

Bidrectional
transf. block 6

Feedforward
layer(s)

………

…

POS Tag

Input outrageous

…

…

…

……

y2

VBD

y3

CD

yn

JJ

…

…

…
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Encoder-Decoder Transformers

Encoder-decoder transformer (Vaswani et al., 2017)

• A transformer that combines a bidirectional
encoder with a left-to-right decoder

• It maps an input sequence X = (x1, . . . ,xn)

to an output sequence Y = (y1, . . . ,yk).

Extended decoder blocks

• The encoder’s output is one representation
hj for each xj of X.

• To attend to hj, each decoder transformer
block has an extra cross-attention layer h(C). yj-2 yj-1

yj

…

Self-attention
layer

f

f

h(C)

h(A)

Cross-attention
layer

Layer
norm

Layer
norm

Ex
te

nd
ed

 d
ec

od
er

 b
lo

ck

f

h(F)Feedworward
layer

Layer
norm

output hj 
of encoder

Cross-attention (aka source attention)

• The query qj is the previous output yj�1 (or its earlier representation).
• The key kj and value vj come from the output hj of the encoder:

The rest is identical to the multi-head self-attention from above.

qj := W(Q) · yj�1 kj := W(K) · hj vj := W(V ) · hj
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Encoder-Decoder Transformers
Architecture

Bidirectional encoder

• Input. X = (x1, . . . ,xn)

• d(I) transformer blocks
compute a contextual
representation

• Output. He = (h1, . . . ,hn)

Left-to-right decoder

• Input. He and y0 for a
unique start tag [sep]

• d(O) transformer blocks
create the output, primed
on He, autoregressively

• Output. Y =(y1, . . . ,yk) …

…

Multi-head self-attention
Layer norm

Multi-head cross-attention
Layer norm

Feedforward layer
Layer norm

h1

…

…

…

…
h2 hn

…
…

…

…
y1 y2 yk

Multi-head self-attention
Layer norm

Feedforward layer
Layer norm

x1 x2 xn

Multi-head self-attention
Layer norm

Feedforward layer
Layer norm

Multi-head self-attention
Layer norm

Multi-head cross-attention
Layer norm

Feedforward layer
Layer norm

…

…

y0 y1 yk-1

……

Bidirectional Encoder Left-to-right Decoder

Encoder block 1

Encoder block d(I)

Decoder block 1

Decoder block d(O)
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Encoder-Decoder Transformers in NLP

Sequence-to-sequence generation

• Task. Given an input text D(I), write an output text D(O) of a certain kind
• For open-ended outputs, left-to-right transformers prove best so far.
• If D(O) must fulfill defined constraints, encoder-decoders may be better.

Selected sequence-to-sequence tasks

• Text summarization. As defined above
• Machine translation. Convert a text from one language to another.
• Style transfer. Change the style of a text while preserving its content.
• Conclusion generation. Infer an argument’s claim from its reasons.
• Debiasing. Rewrite a text into a version free of bias.

Available transformer models

• Left-to-right. GPT-x, LLaMA, Gemma, Mixtral, ...
• Bidrectional. BERT, XLNet, RoBERTa, DeBERTA, ...
• Encoder-decoder. BART, Pegasus, T5, Flan-T5, ... ht

tp
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Statistical NLP IX Transformers © Wachsmuth 2025 32



Large Language Models



Large Language Models

Recap: Language model (LM)

• A representation of a probability distribution over token sequences
• LMs assign a probability P (S) to any sequence S = (w1, . . . , wm), m�1.
• This can be used to predict the most likely next word wm+1.

Large language model (LLM)

• Large is not exactly defined, but most LLMs have billions of parameters.
• Mostly, a pretrained transformer LM is meant that follows instructions,

that is, it answers to prompts.

2018 2019 2020 2021 2022 2023 2024

GPT-1 GPT-2 GPT-3 GPT-3.5 GPT-4
117M params
12x 768 units
512 tokens
4.5GB training

1.5B params
48x 1600 units
1024 tokens
40GB training

175B params
96x 12k units/layer
2048 tokens
570GB training

175B params
96x 12k units
2k tokens
570GB training

1.8T params
120x 20k units
128k tokens
570GB training?

instruction-following

Key aspects of LLMs

• Architecture, training process, input handling, and output handling
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Large Language Models
Architecture

Architecture of LLMs

• At their core, all leading LLMs currently rely
on variants of left-to-right transformers.

• Main differences arise from width and depth,
context size, and training.

rescue… ?boats <s> suchWithout

y1 y3y2

Without boatssuch

………… ………

………

Size of LLMs

• Size refers to the number of parameters of the LLM (i.e., its weights).
• The more parameters, the more can be learned and memorized.
• “Overparameterization” is assumed to be critical for the power of LLMs.

Architecture variants

• Modified transformers, such as a mixture of experts
Multiple feedforward blocks per layer, each seeing different tokens (Jiang et al., 2024)

• Advanced architectures, such as a backpack language model
Mixes static and contextual vectors for explainability and control (Hewitt et al., 2023)
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Training of LLMs

Main training phases of LLMs

1. Pretraining. Train LLM on language modeling
2. Instruction fine-tuning. Teach LLM to follow instructions (see below)

3. Alignment. Optimize LLM behavior towards specific values (see below)

4. (Task-specific) Fine-tuning. Optimize LLM for a specific task

Instruction vs. task-specific fine-tuning

• Instruction. Aims to generalize task-solving capabilities across tasks
• Task-specific. Aims to specialize an LLM towards solving a specific task

An LLM may run through both, but the latter may have negative effects on the former.

Types of LLM fine-tuning

• Full fine-tuning. Adjust all transformer weights (may take long).
• Adapters. Train extra layers added to each transformer block.
• Low-Rank Adaptation (LoRA). Train two extra low-rank matrices in each

layer, whose product is added to the original weights.
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Training of LLMs
Parameter-Efficient Fine-Tuning (Houlsby et al., 2019; Hu et al., 2021)

x1 x2 xj

h’j

…

Self-attention
layer

f

f

h(F)

h(A)

Feedworward
layer

Layer
norm

Layer
norm

Tr
an

sf
or

m
er

 b
lo

ck
 w

ith
 a

da
pt

er
s

h(Aa)Adapter
layer

h(Fa)Adapter
layer

Adapters

x1 x2 xj

hj

…

Self-attention
layer

f

f

h(F)

h(A)

Feedworward
layer

Layer
norm

Layer
norm

Tr
an

sf
or

m
er

 b
lo

ck

a b

Δhj

h’j

d × n

d × r r × n

d × n

LoRA

Lo
w

-ra
nk

 m
at

ric
es

Parameter-efficient fine-tuning

• Adapters. Useful when an LLM shall be fine-tuned for multiple tasks
• LoRA. Useful for general LLM fine-tuning and even more efficient
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Instruction Fine-Tuning

Tasks and instructions (for LLMs)

• Task. A tuple (I,X, Y ) of instruction I, input X, and correct output Y
• Instruction. A token sequence I describing how to obtain Y from X.

For brevity, no distinction here between tokens and their embedding representations

Instruction: Label the input as having positive or negative sentiment towards its subject.

Input: Staff at the front desk was very nice Output: positive

Instruction fine-tuning (IFT)

• A supervised training technique that teaches LLMs to follow instructions
• It fine-tunes LLMs on tasks (I,X, Y ) with input (I,X) and output Y .

Why instruction fine-tuning?

• IFT enables prompting, i.e., making LLMs answer to any instruction.
• Instruction-following LLMs can even tackle unseen tasks without any

more fine-tuning, often effectively.
Statistical NLP IX Transformers © Wachsmuth 2025 38



Instruction Fine-Tuning
Training Data and Process

IFT training data

• The set of instructions {I1, . . . , Im} should be large and diverse.
• The set of tasks per Ij should be small but diverse (e.g., one per label).
• This way, the LLM learns to generalize across instructions rather than

to address specific instructions.

How to obtain IFT training data?

• At least, a set of seed tasks is usually created manually.
• Further tasks may be generated by other LLMs, e.g., via self-instruct.

Example: Self-Instruct (Wang et al., 2023)
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Instruction Fine-Tuning
Impact (Wachsmuth et al., 2024)

(a) Traditional 
      supervised learning  

Task 1
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Task 3

Task 4

Input
spaces

Output
spaces

Representations
not shared across
contexts or tasks

Knowledge
not shared across
tasks

(b) Transformer fine-tuned for
      classification/regression  

Task 1

Task 2
Task 3
Task 4

Shared input
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Output
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Knowledge
not shared across
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(b’) Transformer fine-tuned for
       text generation
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(c) Transformer fine-tuned for 
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Alignment

Limitation of instruction fine-tuning

• IFT focuses only on optimizing language modeling towards answering.
• It does not prevent LLMs from generating false or harmful output.

Alignment

• A technique that optimizes LLM answers towards human preferences
• Preferences come from human or machine feedback on specific values.

For general LLMs, common values are helpfulness, honesty, and harmlessness (3H).

Prompt: Tell me why
we need rescue boats.

Output 1: Without, innocent refugees are killed.
Output 2: Without, innocent refugees may die.

! worse
! better

Selected alignment techniques

• Proximal policy optimization. Train a reward model on preference data;
use reinforcement learning to maximize the reward of the LLM’s output.

• Direct preference optimization. Fine-tune LLM on preference data.
Un-alignment exists, too. Alternatives to alignment include activation-based steering.
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Alignment
Proximal Policy Optimization (Schulman et al., 2017)

Reinforcement Learning (RL) for LLMs

• RL optimizes a policy ⇡ based on rewards given to actions
performed in states in n � 0 steps.

• Policy. The LLM for the given task (e.g., generating answers)
The LLM’s parameters imply its token output probabilities for any input.

Initial
LLM π(0)

LLM π(1)

Aligned
LLM π(n)

RL step 1

RL step 2

RL step n

…
• State. The text generated up to some point in time
• Action. Appending a specific token to the text
• Reward. A score reflecting the quality of the text

Proximal policy optimization (PPO) in a nutshell

• PPO iteratively learns a value model based on a reward model.
• In each iteration i, PPO adjusts ⇡(i�1) based on the value model.

Changes are regularized to limit the KL-divergence of the token probabilities.

• Reward model. Computes scores for states, trained on preference data
• Value model. Predicts score gains of performing an action a0 in a state

compared to the most likely action a
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Alignment
Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022)

• A technique for both IFT and alignment with three main stages:

1 2 3 0.314

1. Instruction
    fine-tuning

2. Reward model
    training

3. PPO-based 
    alignment

Humans 
write input
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Humans
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LLM
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writes multiple 
task outputs

Humans
rank them by 
preference

Rew. model
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LLM
writes output
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Rew. model
computes
reward

LLM 
is updated
using PPO
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O O O

O
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Input Handling of LLMs

Input handling

• Prompt. Text segment given to an LLM as context for output generation
That is, the combination of instruction and (potential) input instance

• Prompting. The act of phrasing a prompt to tackle a given task
Due to language modeling, LLMs may be sensitive to small phrasing variations.

Prompt engineering

• The tuning of prompts to maximize an LLM’s effectiveness on a task
• Often, a manual process based on domain, task, or LLM knowledge.
• Common prompting strategies and prompting methods exist.

Advanced prompting methods

• Few-shot prompting. Give examples for how to solve the task.
• Retrieval-augmented generation. Add retrieved external information.
• Learning to prompt. Automatically optimize prompt on training data.

Techniques for the latter include prompt expansion and soft prompting (left out below)
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Input Handling of LLMs
General Prompting Strategies

Selected prompting strategies

• Persona. Instruct LLM to answer from the view of a specific person type.
• Task description. Specify the task to be tackled in sufficient detail.
• Definitions. Add definitions of concepts relevant to the task.
• Directional stimuli. Give hints on how the output should look like.
• Reasoning steps. Add step-by-step instructions on what to do.

A widely used reasoning-step strategy is chain-of-thought (Wei et al., 2022).

>_
Imagine you are doing the customer relationship management 
of a hotel, analyzing what pasts guests think about your hotel.
You should classify the sentiment polarity of this opinion: <INPUT>
An opinion is a statement that evaluates a specific aspect of the hotel.
You should output one of two label as the polarity: “positive” or “negative”.
To do so, first identify the aspect being talked about in the statement. Then,
identify what sentiment is expressed towards the aspect and decide whether
this is positive or negative for the hotel. The resulting label is

Persona

Task description
Definition

Directional stimulus
Reasoning steps

• Demonstrations. Give explicit examples of outputs for other inputs.
This is known as few-shot prompting (see next slide).
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Input Handling of LLMs
Few-Shot Prompting

Few-shot prompting

• The inclusion of k � 1 demonstrations (shots) of the task in the prompt
• This affects the LLM’s behavior and how the output looks like.

For contrast, using k = 0 demonstrations is called zero-shot prompting.

>_Opinion: the room was clean and cozy. Polarity: positiveShot 1
Opinion: this alone never justifies the price. Polarity: negativeShot 2
Opinion: <INPUT>. Polarity: 

How many shots to use?

• The primary benefit is to demonstrate the task and output format.
• Thus, a small k is often enough (e.g., one shot per classification label).

Too many shots may cause the LLM to overfit to details of the examples.

How to select shots?

• Static. For all inputs, use the same hand-crafted or random shots.
• Dynamic. Select shots based on input (e.g., the most similar ones).
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Input Handling of LLMs
Retrieval-Augmented Generation

Retrieval-augmented generation (RAG)

• Retrieve. Query a text collection for passages relevant to the prompt.
• Generate. Input the prompt to the LLM, augmented by the passages.

GenerateRetrieve

Input
Prompt

Text
collection

Augmented
prompt

Relevant
passages

Generated
output

Search
query

…

• The queries and prompts need to be engineered accordingly.
• The goal is to make the output source-based and more factual.

More on factuality (and hallucinations) in Lecture Part X.

In-context learning

• An LLM’s behavior to improve based on information given in the prompt
• Somewhat a misnomer: The LLM’s weights are not updated thereby.
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Output Handling of LLMs

Modeling tasks for LLMs

• LLMs generate token by token in the usual language modeling way.
• Generation tasks can thus be directly addressed with LLMs.
• Analysis tasks need to be cast as generation tasks via specific prompts

and their interpretation.

Prompt: The sentiment of “Staff at
the front desk was very nice” is: ! P (“positive” | Prompt) vs.

P (“negative” | Prompt)

Output generation with LLMs

• What token to output next, depends on the tokens’ probabilities:

Prompt: Can you tell
me an argument in favor
of having rescue boats?

LLM: Without such boats,
many innocent refugees
will <?>

!
P (“die” | dialogue) = .004
P (“drown” | dialogue) = .003
P (“suffer” | dialogue) = .001

• Diversity (or “creativity”) can be adjusted via sampling strategies.
Sampling is complementary to beam search, both can be applied.
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Output Handling of LLMs
Sampling Strategies

Greedy decoding

• Generate the most likely word next: wm+1 = argmaxw2V P (w| w1, . . . , wm)

• Greedy decoding behaves fully deterministically.

Top-k and top-p sampling

• Top-k. Randomly sample from the k � 1 most likely next words.
• Top-p (nucleus). Randomly sample from the minimum set of words V (p)

such that
P

w2V (p) P (w|w1, . . . , wm) � p, with p 2 (0, 1].
• Both increase diversity, but top-p aims to keep likelihood stable.

Temperature sampling

• Replace the transformer output y := softmax(h(d)) by y := softmax(h(d)/⌧ )

with ⌧ > 0, then sample according to probability distribution.
• Low temperature (⌧<1). Less diversity, as top tokens are promoted
• High temperature (⌧>1). More diversity, as other tokens are promoted

Temperature sampling can be combined with top-k or top-p sampling.
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Large Language Models
Overview of Available LLMs

Available LLMs

• The number of LLMs is continuously growing.
• Many but not all are provided by big tech companies.

Often found here: https://huggingface.co/models

Types of LLMs

• Base. Pretrained only, mostly transformer-based
• Instruct. Instruction-following, optimized on instruction-response pairs
• Chat. Instruction-following, optimized on multi-turn dialogues

Selected LLM Families

• Paid (mostly). GPT (OpenAI), Claude (Anthropic), Pharia (Aleph Alpha)
• Open weight (partly). LLaMA (Meta), Mixtral (Mistral), Gemma (Google)
• Open source. Alpaca (Stanford), BLOOM (BigScience), LeoLM (LAION)

Usually, various LLM sizes and types available; some explicitly multingual/German/...
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Conclusion

Transformer

• A neural architecture fully based on self-attention
• Types: left-to-right, bidirectional, encoder-decoder
• Transfer learning based on pretraining and fine-tuning

x1 x2 xn

y1 y2 yn

…

…

…
Self-

attention
layer

h(A) h(A) h(A)

Impact of transformers

• Transformers solve context modeling to a wide extent
• Training and inference easy to parallelize
• State of the art in most NLP tasks nowadays

Output
(Softmax)

Transformer
block 1

…spent !outrageous [sep] andNice

y1 y3y2

Nice centraland

………… ………

Transformer
block 6

Linear
projection

………

…We

…

Summary

Input

Large language models

• Left-to-right transformers with billions of parameters
• Instruction fine-tuned and aligned to preferences
• Prompting and sampling strategies for I/O handling
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