
Statistical Natural Language Processing
Part VIII: NLP using Neural Networks

Henning Wachsmuth

https://ai.uni-hannover.de

Statistical NLP VIII Neural Networks © Wachsmuth 2024 1

https://ai.uni-hannover.de

Learning Objectives

Concepts

• Neural units with activation functions
• Network architectures
• Bidirectional long short-term memory
• Attention in neural networks

Methods

• Perceptron units for classification
• Feed-forward networks for classification and regression
• Recurrent networks for sequence labeling and generation

Tasks

• Sentiment analysis
• Language modeling
• Part-of-speech tagging
• Coreference resolution

Statistical NLP VIII Neural Networks © Wachsmuth 2024 2

Outline of the Course
I. Overview

II. Basics of Data Science

III. Basics of Natural Language Processing

IV. Representation Learning

V. NLP using Clustering

VI. NLP using Classification and Regression

VII. NLP using Sequence Labeling

VIII. NLP using Neural Networks
• Introduction
• Neural Units
• Feedforward Networks
• Recurrent Networks
• Conclusion

IX. NLP using Transformers

X. Practical Issues
Statistical NLP VIII Neural Networks © Wachsmuth 2024 3

Introduction

Motivation

Statistical NLP using features

• So far, the focus has been on feature-based learning techniques for
classification, regression, and sequence labeling.

• Representation. Features of predefined types are computed on data.
• Modeling. A function of predefined complexity is learned.

Selected pros and and cons

• Pro. Expert knowledge can be incorporated intuitively.
• Pro. Models remain interpretable to some extent.
• Con. Manual decisions limit what can be learned statistically.
• Con. Non-linear functions cannot be approximated easily.
• Con. Generation tasks are hard to model effectively.

Solution: Neural networks

• A family of learning techniques applicable to any NLP task
• Given sufficient data, neural networks largely overcome the cons.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 5

Neural Networks

Neural network in a nutshell

• A layered network of small computing units

• Given a vector of input values x =(x1, . . . , xm),
predict k � 1 output values y =(y1, . . . , yk).

• Each unit takes a vector of values as input
and outputs one or more values.
A unit’s input may be x and/or the output of other units. x1 x2 xm

y1 y2 yk…

…

…

…

… …

Input layer

Hidden layers

Output layer

(Deep) Learning

• Given training data, neural networks learn functions y(x).
• Even with only one hidden layer, any function can be approximated.
• Networks with several layers can learn complex input representations.

Supervised or unsupervised learning?

• Neural networks tackle prediction tasks in a supervised manner.
• Input representations may largely be learned unsupervised.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 6

Neural Networks
Feedforward Networks

Feedforward neural network (FNN)

• A network that processes its input iteratively
from one layer to the next

• 1 input layer, d � 0 hidden layers, 1 output layer

• No cycles and, by default, fully-connected layers x2x1

y1

Training

• The weights of individual units can be optimized via gradient descent.
• A whole FNN is optimized via backpropagation.

Application

• The FNN architecture is suitable for classification and regression.
• FNNs may decide types of short texts, score them, ...
• Example. Scoring of spans and relations in coreference resolution

Statistical NLP VIII Neural Networks © Wachsmuth 2024 7

Neural Networks
Recurrent Networks

Recurrent neural network (RNN)

• A network that has cycles in its connections

• The input of some units, directly or indirectly,
depends on their own earlier outputs
We will look at the most common form of RNNs below.

x2x1

y2y1

…

Training

• An RNN can be seen as processing one input vector in each time step.
• By “rolling out” an RNN, it can also be optimized with backpropagation.

Application

• RNNs are suitable for sequence labeling and language modeling.
• In NLP, RNNs are widely applied for sequential text analysis/generation.
• Example. Encoding span context in coreference resolution

Statistical NLP VIII Neural Networks © Wachsmuth 2024 8

Neural Networks
Input Representation in NLP

Input representation

• The input and its encoding make neural NLP techniques specific.
• Most methods embed the plain tokens of a given text.
• Hand-crafted features may additionally be included in the input vector x.

Example: Meta-information on a text is often encoded as one-hot vectors.

Embeddings

• Pretraining. Embed tokens (or other spans) using pretrained models.
• Fine-tuning. Adapt pretrained embeddings to the given task.
• From scratch. Fully learn to embed as part of task training.

The unsupervised pretraining of embeddings is a key idea of deep learning.

Features

• The functions learned by neural units can be seen as complex features.
• They can also model non-linear interactions of hand-crafted features.
• Each hidden layer thereby computes a representation of x.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 9

Neural Networks
Language Modeling

Language model (LM)

• A probability distribution over a sequence of tokens
• Assigns a probability P (w1, . . . , wm) to any sequence w1, . . . , wm, m�1

• The probabilities are derived from token sequences in a corpus.

LMs for generation

• Given w1, . . . , wm, the most likely next token wm+1 can be computed.
• This is the core idea of most text generation models in today’s NLP.

Types of LMs

• n-gram LM. Approximates the probability of m tokens for some n as:

P (w1, . . . , wm) =
mY

i=1

P (wi|w1, . . . , wi�1) ⇡
mY

i=1

P (wi|wi�(n�1), . . . , wi�1)

• Neural LM. Extends the idea of n-gram LMs to embeddings (more below)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 10

Neural Units

Neural Units

(Feedforward) Units in neural networks

• A neural network architecture is composed of a set of units.
• A unit takes a vector of real-valued numbers x = (x1, . . . , xm) as input.
• It applies some activation function a to the weighted sum z(x) of x to

compute a real-valued number as output y.

x0 = 1

x1

xm

yΣ
z a……

Weighted sum

• A unit sums up the values in x using weights w and a bias term b:

z(x) := b +wTx = b + w1 · x1 + . . . + wm · xm

• To simplify the notation, we add another input value x0 := 1 to x and see
b as an additional weight w0 := b in w for x0. So, we get:

z(x) := wTx = w0 · x0 + . . . + wm · xm
Statistical NLP VIII Neural Networks © Wachsmuth 2024 12

Neural Units
Activation Function and Perceptron

Activation function

• To obtain the output y, a unit applies some activation function a to z:

y := a(z(x)) = a(wTx)

• Different commonly used activation functions exist.
• The activation function should be non-linear (more below).
• An exception is the function of the simplest units: perceptrons.

Perceptron

• A neural unit for binary classification that
has no (real) non-linear activation

• Perceptrons simply map the weighted sum z

to 0 or 1 based on its sign:

1

0 wTx
perc(wTx)

y = perc(wTx) :=

(
0 if wTx  0

1 if wTx > 0

Statistical NLP VIII Neural Networks © Wachsmuth 2024 13

Perceptron

Learning task

• Given a training set D := {(x, c)} with c 2 {0, 1}.
• Determine weights w that minimize the degree of

misclassification of perc(wTx).

w

Loss function

• The degree of misclassification is operationalized
as the squared distance to the training labels:

L(w) :=
1

2
·

X

(x,c)2D

(c�wTx)2

Optimization

• Find w = (w0, . . . , wm) that minimizes L(w).
• For this, stepwise adjust w to its gradient:

�@L(w)

@w0
, . . . ,

@L(w)

@wm

�
0

L(
w
)

w2

w1

Statistical NLP VIII Neural Networks © Wachsmuth 2024 14

Perceptron
Gradient Adjustment

Gradient adjustment for a perceptron

• Gradient. Direction of steepest ascent (multidimensional derivative)
• Adjustment. Stepwise opposite to gradient

Amount of adjustment depends on a learning rate ⌘

w w +�w where �w := �⌘ ·
�@L(w)

@w0
, . . . , @L(w)

@wm

�

Partial derivative for each weight
@

@wj
L(w) =

1

2
·
X

(x,c)2D

@

@wj
(c�wTx)2

=
1

2
·
X

(x,c)2D

2 · (c�wTx) · @

@wj

⇣
c� (w0 + w1 · x1 + . . . + wm · xm)

⌘

=
X

(x,c)2D

(c�wTx) · (�xj)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 15

Perceptron
Stochastic Gradient Descent

Recap: Stochastic gradient descent (SGD)

• SGD approximates optimal weights w of a function, here of z(x) = wTx.
• It adjusts weights to the gradients of single instances
• In its simplest form, it iterates multiple times over all instances.

Signature

• Input. A set of training pairs D, learning rate ⌘, # epochs tmax

• Output. A weight vector w 2 Rm+1

perceptronSGD(D, ⌘, tmax)
1. double [] w getM+1RandomValues(-1, 1)

2. for each int t 1 to tmax do
3. for each (x,c) 2 D do
4. double � c - wTx // Classification error

5. w w + (-⌘ · � · -x) // Gradient adjustment

6. return w

Statistical NLP VIII Neural Networks © Wachsmuth 2024 16

Neural Unit
Beyond Linear Classification

Limitations of the perceptron unit

• A single perceptron can only learn linear decision boundaries.
Example: XOR cannot be learned this way. Why not?

• Accordingly, it can also deal only with binary decision problems.

Solution: Multiple units?

• Combining multiple perceptrons enables learning non-linear functions.
Example: XOR can be learned based on the output of two perceptrons.

• However, learning deeper representations is not possible. Example:

z(x) := wT · (1, za(x), zb(x)) where za(x) := wT
a x and zb(x) := wT

b x

z(x) = w0 + (w1 ·wT
a x) + (w2 ·wT

b x) := w0 +w0Ta x +w0Tb x

Solution: Non-linear activation functions

• Multiple units with non-linear activation enable deep representations.
• Respective neural networks can also handle multiple classes.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 17

Neural Unit
Non-Linear Activation Functions

Sigmoid (�)

• Fully differentiable mapping into range [0, 1]:

y = �(wTx) :=
1

1 + e�wTx

σ(wTx)

1

0 wTx

Tangens hyperbolicus (tanh)

• Variant of sigmoid with ranges [�1, 1]:

y = tanh(wTx) :=
ew

Tx � e�w
Tx

ewTx + e�wTx

1

-1

wTxtanh(wTx)

Rectified linear unit (ReLU)

• Cut off weighted sum at a minimum of 0:

y = ReLU(wTx) := max(wTx, 0)

1

0 wTx
ReLU(wTx)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 18

Neural Unit
Comparison of Activation Functions

Sigmoid

• Pro. Smoothly differentiable, robust against outliers (mapping to [0, 1])
• Con. Derivative near 0 for high values! vanishing gradient problem

Due to gradient multiplications, error signals may get too small for learning.

Tangens hyperbolicus

• Pro. Smoothly differentiable, mapping to [�1, 1] better for learning
Weights can be better adjusted for all-positive / all-negative instances.

• Con. Same problem with high values
• The tangens hyperbolicus is usually better than sigmoid in practice.

ReLU

• Pro. Results close to being linear! much fewer vanishing gradients
• Con. Not smoothly differentiable, vulnerable to outliers
• ReLU is most commonly used in practice; the cons can be handled.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 19

Neural Unit
Derivatives of the Activation Functions

Derivatives

• Sigmoid:
@�(wTx)

@wTx
= �(wTx) · (1� �(wTx))

• Tangens hyperbolicus:

@ tanh(wTx)

@wTx
= 1� tanh(wTx)2

• ReLU:
@ ReLU(wTx)

@wTx
:=

(
0 if wTx < 0

1 if wTx � 0

Notice

• We will use sigmoid in the pseudocodes below for simplicity.
• For the others, the respective uses of � can be replaced accordingly.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 20

Feedforward Networks

Feedforward Neural Network

Feedforward neural network (FNN) (misnomer: multilayer perceptron)

• A network with multiple sequentially connected layers of neural units
• An input x is propagated through the FNN to compute an output y.
• FNNs have one input layer, d � 0 hidden layers, and one output layer.

x0

x1

x2

h0
(1)

h1
(1)

h2
(1)

h3
(1)

h0
(2)

h1
(2)

h2
(2)

h3
(2)

y1

y2

input hidden output

w1
(1
1
)

w
0
(1
1

)

w 2
(1 1

)

= 1 = 1 = 1

Layers

• Input. A layer of input units x := (x0, . . . , xm) with x0 := 1

• Hidden. A layer h(i) with ni + 1 hidden units h(i)
j with ni � 1, h(i)

0 := 1

• Output. A layer of output units y = (y1, . . . , yk) with k � 1

We define h(0) := x and h(d+1) := y to simplify the notations below, where needed.
Statistical NLP VIII Neural Networks © Wachsmuth 2024 22

Feedforward Neural Network
Architecture

Output notation

• We use h(i)
j to denote the output value of a hidden unit h(i)

j 2 h(i).
• We use yj = h(d+1)

j for the output value of an output unit yj 2 y.

Feedforward architecture

• In a default FNN, layers are fully-connected with no cycles.
• Fully-connected. Each unit h(i)

j , j � 1, takes all outputs of h(i�1) as input.

• No cycles. No other input is used by h(i)
j .

Not fully-connected variations exist, but cycles are never possible.

Depth and width

• The higher d, the more complex input representations can be learned.
If d = 0, an FNN simply performs linear regression for each yj.

• The more units ni in layer h(i), the more features are computed from the
outputs of layer h(i�1).

Statistical NLP VIII Neural Networks © Wachsmuth 2024 23

Feedforward Neural Network
Model and Representation

Model defined by an FNN

• Each hidden unit and output unit h(i)
j , 1  j  ni, learns a weight vector

w(i)
j = (w(i)

0 j, . . . , w
(i)
ni�1 j

) with one weight for each output of layer h(i�1).

• W (i) := (w(i)
1 , . . . ,w(i)

ni) are the weight vectors of a layer h(i).
• W := {W (1), . . . ,W (d+1)} are the model parameters of an FNN.

h(1) h(d)x y…

Representations

W(1) W(d) W(d+1)W(2)

Representations in an FNN

• The output h of a hidden layer defines a representation of the input.
• h(1) computes features of the input, h(2) features of features, etc.
• Each h(i) can thus be seen as an abstraction of h(i�1).
• Learning good abstractions that predict y is the core idea of an FNN.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 24

Backpropagation

Learning task

• Given a training set D := {(x, c)} with c = (c1, . . . , ck).
• Determine weights W that minimize the degree of

misclassification of y of a given FNN.

Loss function
• We here use the sum over the squared distances of all outputs yj:

A common alternative is the cross-entropy loss.

L(W) :=
1

2
·

X

(x,c)2D

kX

j=1

(cj � yj)
2

• Note: yj := a(w(d+1)T
j · h(d)) also depends

on the weights in W of all previous layers.

Optimization
• L has various local minima in general
• Every unit h(i)

j of the FNN is optimized
based on its inputs and outputs. w10 w31

L

Statistical NLP VIII Neural Networks © Wachsmuth 2024 25

Backpropagation
Gradient Descent for a Feed-Forward Network

Gradient descent for an FNN

• Gradient. Derivative of activation function (for each single unit)
• Adjustment. Stepwise backpropagation of errors through the network

Illustration of forward propagation and backpropagation

1. Forward. Compute output value y(i)j for each unit in each layer.
2. Backward. Update weights w(i)

l j of each unit in reverse order of layers.

x0

x1

x2

h0
(1)

h1
(1)

h2
(1)

h0
(2)

h1
(2)

h2
(2)

y1

y2

x1

x2

x =

c1

c2

= c

Forward
propagation

1

x1

x2

h1
(1)

h2
(1)

1

h1
(2)

h2
(2)

1

y1

y2

Backward
propagation

w0
(3
1
)

w1
(3
1
)

w0
(3
2
)

w1
(3
2
)

w2
(3
2
)

w2
(3
1
)

w0
(2
1
)

w1
(2
1
)

w0
(2
2
)

w1
(2
2
)

w2
(2
2
)

w2
(2
1
)

w0
(1
1
)

w1
(1
1
)

w0
(1
2
)

w1
(1
2
)

w2
(1
2
)

w2
(1
1
)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 26

Backpropagation
Pseudocode

Signature

• Input. Set of training pairs D, learning rate ⌘, # epochs tmax

• Output. Weight vectors W (i) = {wi0, . . . ,win} for each layer 1  i  d+ 1

backpropagation(D, ⌘, tmax) // data types omitted for brevity

1. for each i 1 to d+1 do
2. for each w 2 W (i) do w getRandomValues(-1, 1)
3. for each t 1 to tmax do
4. for each (x,c) 2 D do
5. for each j 1 to m do h(0)

j xj // Fwd. propagation

6. for each i 1 to d+1, j 1 to ni do h(i)
j �(W (i)T

j h(i�1))
7. for each j 1 to k do // Bwd. propagation (output)
8. �(d+1)

j (c - h(d+1)) � h(d+1) � (1-h(d+1))

9. W (d+1)
j W (d+1)

j + (-⌘ · �(d+1)
j � h(d))

10. for each i d to 1, j 0 to ni do // Bwd.(hidden)
11. �(i)

j W (i)
j � �(i+1)

j � h(i) � (1-h(i))

12. W (i)
j W (i)

j + (-⌘ · �(i)
j � h(i�1))

13. return W (1), . . . ,W (d+1)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 27

Feedforward Neural Network
Selected Hyperparameters

Network architecture

• Width and depth. How many layers, how many nodes per layer
• Activation functions. Which function to use in hidden and in output units
• Input encoding. What input to use, whether to fix its encoding (see below)

Optimization process

• Learning rate. How much to adjust to training errors
• Optimization algorithm. Alternatives to gradient descent exist

A commonly used optimizer is Adam (Kingma and Ba, 2015).

• Batch size. Train consecutively on training set batches (left out above)

Regularization

• Epochs. How often to iterate over the training set
• Early stopping. Stop training once validation error grows (left out above)

• Dropout. Drop connections/nodes with low probabilities (left out above)
Statistical NLP VIII Neural Networks © Wachsmuth 2024 28

Feedforward Neural Network
Tackling tasks using FNNs

Interpretation of output values

• How to interpret an FNN’s output y = (y1, . . . , yk), depends on the task:

• Regression. Each yj can directly be used as a prediction
• Classification. Each yj is seen as a probability of a label
• Language modeling. As classification: each possible token as one label

Binary vs. multinomial classification

• Binary. y = (y1); y1 is the probability of label 1 (as opposed to label 0)
• Multinomial. y = (y1, . . . , yk) for k>2 labels; yj is the probability of label j

How to ensure probabilities?

• All yj need to employ an activation function that outputs a probability.
• Mostly, the Softmax function is used for this purpose.
• In the binary case, sigmoid can also be used alternatively.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 29

Feedforward Neural Network
Softmax

Softmax

• Activation function that maps the weighted sum zj
of a neural unit hj to a probability using knowledge
about all neural units in the same layer

softmax(zj)
1

0 zj

• For output unit yj in layer y = h(d+1) with zj = w(d+1)T
j h(d), the softmax is:

yj = softmax(zj) :=
ezj

Pk
l=1 e

zk

Example

Weighted sums: z1 = 2.5, z2 = 1.0, z3 = �1.5

Output values: y1 = softmax(2.5) ⇡ .806, y2 = softmax(1.0) ⇡ .180, y1 = softmax(�1.5) ⇡ .015

Derivative of Softmax

@ softmax(zj)

@ softmax(zl)
:=

(
softmax(zj) · (1� softmax(zj)) if j = l

� softmax(zj) · softmax(zl) if j 6= l

Statistical NLP VIII Neural Networks © Wachsmuth 2024 30

Feedforward Neural Networks in NLP

FNNs in NLP

• FNNs map fixed-length input vectors to output values.
• This makes them suitable for standard classification and regression.
• With limitations, FNNs can also be used for language modeling.

Selected applications of FNNs

• Classification. Topic classification, sentiment analysis, ...
• Regression. Candidate span scoring, probability prediction, ...
• Other. Mostly, FNNs are used as part of bigger network architectures

For example, they are also part of any transformer (see Lecture Part IX).

Examples here

• Sketch of FNNs for review sentiment analysis and language modeling
• Later, we see their use within a coreference resolution approach.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 31

Feedforward Neural Networks in NLP
Classification and Regression using FNNs

Embeddings
• Unlike x, texts vary in length, i.e., in the number of tokens n.
• Pooling. To obtain a fixed length, the embeddings V = (v1, . . . ,vn) of a

text may be aggregated with some pooling function f . Example:

x := fmean(V) :=
1

n
·

nX

j=1

vj

• For longer texts, pooling may not lead to good representations.
FNN types such as convolutional neural networks use advanced pooling techniques.

Features

• FNNs may learn better representations also for hand-crafted features.
• Pooled embeddings and other features may be combined in x.

Alternative: Transformers

• The neural transformer architecture overcomes many length problems.
• Nowadays, it is standard for text classification (and similar tasks).

Statistical NLP VIII Neural Networks © Wachsmuth 2024 32

Review Sentiment Analysis

Example: 2-layer FNN feature classification (input layer not counted)

• Input. Feature representation, as seen in Lecture Part VI
• Output. Probability of each sentiment class: positive, neutral, negative

x0 P(positive)

y3

……
x1193

x1

h0
(1)

h1
(1)

hn
(1
1
)

P(neutral)

P(negative)

y2

y1

Input ReLU Softmax
We spent one night at
that hotel. Staff at the
front desk was very
nice, the room was
clean and cozy, and the
hotel lies in the city
center... but all this
never justifies the price,
which is outrageous!

Input text 1193 Features
Standard
features

Local sentiment
distribution

Discourse relation
distribution

Sentiment flow
patterns

Map
ping

Example: 2-layer FNN embedding regression
• Input. Pooled embedding, as sketched above
• Output. Sentiment score in [0, 1] that can be mapped to [1, 5]

(, , …,)
(, , …,)
(, , …,)

(, , …,)

x0

……

x300

x1

h0
(1)

h1
(1)

hn
(1
1
)

y1

Input ReLU Sigmoid
We spent one night at
that hotel. Staff at the
front desk was very
nice, the room was
clean and cozy, and the
hotel lies in the city
center... but all this
never justifies the price,
which is outrageous!

Input text 300d Embeddings

…

……
Embed

ding Poo
ling

We

spent

one

outrageous

score… …

Statistical NLP VIII Neural Networks © Wachsmuth 2024 33

Feedforward Neural Networks in NLP
Language Modeling using FNNs

Neural language modeling

• The main difference to n-gram language modeling is that a word’s prior
context is represented by embeddings.

• This enables generalizing learned dependencies to unseen sequences.

Training: argmaxy P (y | the people were) = lovely
Application: P (lovely | the peepz were) = ?

• Feedforward LMs are not state of the art, but help understand the basic
ideas of neural language modeling. (more below)

Feedforward LM (figure on next slide)

• Given a window of n previous words, predict next word and proceed.
• Input. The one-hot vector of the n words
• Embedding. A first hidden layer concatenates the words’ embeddings.
• Hidden. Other hidden layers learn the prediction.
• Output. The probability of every possible next word from a vocabulary V

Statistical NLP VIII Neural Networks © Wachsmuth 2024 34

Feedforward Neural Networks in NLP
Training of Feedforward LMs

y1

Input
(one-hot)

Embed-
dings

Output
(Softmax)

Token
sequence

Enco
ding

one
night
at
that
hotel

…

…

… …
…

…

…
…

… …

y2

y|V|

…

Hidden
(ReLU)

P(a | …)

P(zyzzyva | …)

P(aadvark | …)

…
h0

(2)

h1
(2)

hn
(2
2
)

Window

Training of embedding layer

• Pretraining. Employ pretrained model (e.g., GloVe), freeze its weights.
• Fine-tuning. Update weights of pretrained model in FNN training.
• From scratch. Train embedding layer like other hidden layers of FNN.

The two latter focus the word embeddings on the given task.

Training of FNN

• Process. Consecutively predict each word o of all training sequences;
backpropagate probability difference to correct word o⇤.

• Output. A network for language modeling, and an embedding model
Statistical NLP VIII Neural Networks © Wachsmuth 2024 35

Recurrent Networks

Recurrent Neural Network (RNN)

Limitations of feedforward LMs

• The fixed-size window limits context and fails to model interactions.
• Patterns related to constituency and compositionality are hard to learn.

... one night at ... vs. ... night at that ... vs. ... at that hotel ...

Recurrent neural network (RNN)

• A network with d + 2 layers that computes
one output for each input

• Input. A sequence X = (x1, . . . ,xn)

with xt = (xt1, . . . , xtm), 1  t  n

• Output. A sequence Y = (y1, . . . ,yn)

with yt = (yt1, . . . , ytk), 1  t  n xt0 xt1 xt2

yt1 yt2

ht
(1
0
) ht

(1
1
) ht

(1
2
)

xt

yt

ht
(1)

Recurrent architecture

• Neural units in a layer h(i)
t apply activation functions to weighted sums.

• The input of h(i)
t is the output h(i�1)

t and its own previous output h(i)
t�1.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 37

Recurrent Neural Network (RNN)
Architecture

Sequential processing

• An RNN prosesses one input xt of the sequence X at a time.
• The recurrent structure of an RNN can be seen as “unrolling” in time.

xt

yt

ht
(1)

x1

y1

h1
(1)

x2

y2

h2
(1)

xn

yn

hn
(1)

wt
(1)vt

(1)
w1
(1) w2

(1)v2
(1)

wn
(1)vn

(1)

…

…

…

Modeling of prior context

• Hidden layer ht�1 encodes processing at time step t� 1 to inform the
decisions of ht at step t and later ones.
In principle, there is no limit on the length of modeled prior context.

• As in an FNN, a neural unit h(i)
tj has weights w(i)

tj for the output of h(i�1)
t .

• In addition, h(i)
tj has weights v(i)

tj for output of its own layer h(i)
t�1 at t� 1.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 38

Recurrent Neural Network (RNN)
Inference

Forward propagation in a nutshell

• At each time step t, propagate input xt through the RNN.
• Weights of each layer h(i)

t are stepwise updated using h(i)
t�1 and h(i�1)

t .
Here, h(0)

t := xt and h(d+1)
t := yt. All weights are assumed to be initialized.

Signature

• Input. A sequence of vectors X = (x1, . . . ,xn) with xt = (xt1, . . . , xtm)

• Output. A sequence of vectors Y = (y1, . . . ,yn) with yt = (yt1, . . . , ytk)

forwardPropagationRNN(List<double []> X)
1. for each i 1 to d+ 1 do
2. for each j 1 to ni do h(i)

0j 0 // Init. previous output

3. for each t 1 to n do
4. for each i 1 to d do
5. for each j 1 to ni do h(i)

tj �(v(i)T
tj · h(i)

t�1 + w(i)T
tj · h(i�1)

t)

6. for each j 1 to k do ytj softmax(w(d+1)T
tj · h(i)

t)

7. return (y1, . . . ,yn)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 39

Recurrent Neural Network (RNN)
Training

Differences from FNNs

• To compute the loss at step t, the hidden layer h(i)
t�1 is needed.

• The error of h(i)
t depends on its influence on both y(i) and h(i)

t+1.

Backpropagation through time

• Step 1. Forward inference to compute all h(i)
t and y(i), accumulating the

loss sequentially for each input xt 2 X.
• Step 2. Process X in reverse to compute all required gradients, saving

the error term for each h(i)
t backwards for each t.

Use of standard backpropagation

• By unrolling an RNN, backpropagation still applies (with extra weights).
• For each training sequence X, a specific unrolled version is created.
• Longer sequences can be segmented into multiple training instances.

How long sequences can be, depends on the available computing resources.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 40

Recurrent Neural Networks in NLP

Language modeling with RNNs

• Stepwise predict next word from current one and previous hidden layer.
• An output value ytj denotes the probability that the next word ot+1 is oj

from a vocabulary ⌦:

8oj 2 ⌦ : ytj := P (ot+1 = oj | o1, . . . , ot)

Training of RNN-LMs

• Find weights V={v(i)
t |1 tn, 1 id}, W={w(i)

t |1 tn, 1 id+1}
that minimize the mean error in predicting the true next word o⇤t+1.

• For any training input subsequence (o⇤1, . . . , o
⇤
t), the loss is the inverse of

the probability assigned to o⇤t+1:

L(V,W, Xt) := 1� P (ot+1 = o⇤t+1 | o⇤1, . . . , o⇤t)

• Teacher forcing. At step t + 1, the prediction is ignored, and the process
is repeated with (o⇤1, . . . , o

⇤
t+1).

Statistical NLP VIII Neural Networks © Wachsmuth 2024 41

Recurrent Neural Networks in NLP
Text Generation

Example: Language modeling

• RNN models repeatedly generate words conditioned on prior words.

• Input. An initial word,
or a start tag <s>

• Output. A probability
of each word in ⌦

… … … … …

… … … ….. ..Input layer
(one-hot)

Embedding
layer

Output layer
(Softmax)

RNN layer(s)
(ReLU)

We<s> onespent night

y1 y2 y4y3 y5

spentWe nightone ?

…

Autoregressive text generation

• Prompting. Specify a start text segment, e.g., a sentence beginning .

• Language modeling. Incrementally append words to the prompt and
words appended to it, until an end tag <e> or some length is reached.
The start segment primes the generation with a context of interest.

• Beam search. Create some k>1 most likely sequences simultaneously.
Statistical NLP VIII Neural Networks © Wachsmuth 2024 42

Recurrent Neural Networks in NLP
Sequence Labeling

Sequence labeling with RNNs

• The RNN architecture directly applies to a sequential labeling of inputs.
• Unlike probabilistic sequence models, however, simple RNNs cannot

revise decisions for earlier inputs.

Example: Part-of-speech tagging

• Input. A sequence of tokens, processed from left to right
• Output. The probability of each possible tag, once for each token

Most likely label shown

… … … … …

… … … ….. ..Input layer
(one-hot)

Embedding
layer

Output layer
(Softmax)

RNN layer(s)
(ReLU)

CookTim in was Cupertino

y1 y2 y4y3 y5

NNPNNP INVBD NNP

Statistical NLP VIII Neural Networks © Wachsmuth 2024 43

Recurrent Neural Networks in NLP
Classification

Text classification with RNNs

• The last hidden layer h(d)
n of the last input xn constitutes a compressed

representation of a whole sequence X.
• For classification, h(d)

n can be given as input to an FNN.

Example: Sentiment analysis

• Input. A sequence of tokens, processed from left to right

• Output. The probability of each possible polarity
of the whole sequence
Most likely label shown

… … … …

… … … …

…

…

…Input layer
(one-hot)

Embedding
layer

Output layer
(Softmax)

RNN layer(s)
(ReLU)

y

negative

We onespent … outrageous

FNN layer(s)
(ReLU)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 44

Advanced Recurrent Architectures

Limitations of simple RNNs

• Unidirectionality. Only prior context modeled, even if all input accessible
• Long-term dependencies. Hard to learn, due to vanishing gradients

x1 x2 xn

Forward
layer 1 …

…Backward
layer 1

Forward
layer 2

Backward
layer 2

y1 y2 yn

…

…

…

…

…

…

x1 x2 xn…

y1 y2 yn…

Bidir.
layer 1

Bidir.
layer 2

h1
(F,1) h2

(F,1) hn
(F,1)

h2
(F,2) hn

(F,2)

h2
(B,1) hn

(B,1)

h1
(B,2) h2

(B,2) hn
(B,2)

h1
(1) h2

(1) hn
(1)

h1
(2) h2

(2) hn
(2)h1

(F,2)

h1
(B,1)

Bidirectional RNNs

• Two RNNs F and B: F processes (x1, . . . ,xn) forward, B backward
• In step t, layer h(F,i)

t depends on (x1, . . . ,xt), and h(B,i)
t on (xt, . . . ,xn).

• The concatenation of both is the input to the next layers:

h(i)
t := h(F,i)

t � h(B,i)
t

Statistical NLP VIII Neural Networks © Wachsmuth 2024 45

Advanced Recurrent Architectures
Long Short-Term Memory (LSTM)

Modeling of long-term dependencies

• Networks should be able to retain distant information, if relevant.

the/DT name/NN of/IN their/PRP ceo/NNP is/VBZ cook/?

• The context management needed for this can be learned explicitly.

Long short-term memory (LSTM)

• A specialized unit which adds an explicit
context layer c(i) to each hidden layer h(i)

• Gates with additional weights control the
flow of input and output information

• A gate is a feedforward layer with sigmoid
that is multiplied with the layer being gated.

• Gates. Forget gate, add gate, output gate
Role of each gate on the next slide ht

(i
-1
) ht

(i-1)ct
(i
-1
)

ft
(i)

ft
(i)~

ht
(i)~

at
(i) ot

(i)

at
(i)~

ct
(i)

ht
(i)

ct
(i) ht

(i)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 46

Advanced Recurrent Architectures
Gates of an LSTM

Forget gate
• Delete information from context c(i)t�1 that is no longer needed:

f (i)t := �(v(i)
f · h(i)

t�1 +w(i)
f · h(i�1)

t) f̃ (i)t := c(i)t�1 � f (i)t

• Compute a preliminary version of the current hidden layer output:

h̃(i)
t := ReLU(v(i)

t · h(i)
t�1 +w(i)

t · h(i�1)
t)

Add gate
• Select information from h̃(i)

t to add to the current context:

a(i)t := �(v(i)
a · h(i)

t�1 +w(i)
a · h(i�1)

t) ã(i)t := h̃(i)
t � a(i)t

• Together with the forget gate, the new context vector is computed as:

c(i)t := f̃ (i)t + ã(i)t
Output gate

• Decide what information is required for the output of the hidden layer:

o(i)
t := �(v(i)

o · h(i)
t�1 +w(i)

o · h(i�1)
t) h(i)

t := o(i)
t � ReLU(c(i)t)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 47

Advanced Recurrent Architectures
Neural Units Revisited

Types of neural units

• Feedforward. Input only from previous layer, one set of weights, one
activation function, one output

• Recurrent. Input also from previous step, two set of weights

• LSTM. Additional input/output layer, multiple weights and functions
Further variations exist, such as the gated recurrent unit (GRU).

hj
(i)Σ

z a
h(i-1)

Feedforward unit

Σ
z a

Recurrent unit

ht
(i
-
)
1

ht
(i-1)

ht
(i
j
)

LSTM unit

ht
(i
-
)
1

ht
(i-1)

ct
(i
j
)ct

(i
-
)
1

ht
(i
j
)

Encapsulation of units

• The modular unit concept enables a flexible design of architectures.
• Some complexity arises from the varying inputs and outputs.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 48

Advanced Recurrent Architectures
Encoder-Decoder Network and Attention (only sketch here, more in Lecture Part IX)

Encoder-decoder network (aka sequence-to-sequence networks)

• A network that separates input encoding from output decoding
• Encoder. Process the whole input sequence X = (x1, . . . ,xn) in l layers

to create a context representation c := h(l)
n .

• Decoder. Generate a sequence of outputs Y = (y1, . . . ,yk) from c.

Output
(Softmax)

Encoder

spentWe nightone at <s> hotelthat

y1 y3y2

that </s>hotel

Decoderhn
(l)

…………… ………

Attention

• A method to learn which input parts are relevant to which output parts
• Encoding. Condition c on all outputs of layer h(l): c := f (h(l)

1 , . . . ,h(l)
n).

• Weighting. Learn a separate context ct for each decoding step t.
Statistical NLP VIII Neural Networks © Wachsmuth 2024 49

Coreference Resolution

Coreference

• Two or more expressions in a text that refer to the same entity
• Expressions may be pronouns or coreferring noun phrases.

Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne
in 1977. The company from Cupertino is usually just called Apple. Already
in 1976, they had started selling the Apple I.

Coreference resolution

• The task to find the antecedent yi of each expression xi in a
text D, i.e., the preceding expression in D that xi refers to

• This creates a clustering C of coreferring expressions in D
Apple

Apple Inc.

Why resolving coreference?

• A fundamental step to understand what is talked about
• Typical use case: Extract information from texts to fill databases.

Despite a long history, coreference resolution is barely solved.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 50

Coreference Resolution
A Neural End-to-End Approach (Lee et al., 2017)

Model
• Consider all n possible spans xi of a text D.
• The antecedent of xi is yi 2 Xi = {✏, x1, ..., xi�1}.

If yi = ✏, xi is not an expression or is not mentioned before.

• Goal. Find a mapping from xi to yi that creates
the correct clustering C.

Apple Inc. is called Apple

Apple
Apple Inc.
Apple Inc. is
…

Inc.
Inc. is
…

…
…

Learning task
• Learn a probability distribution whose maximum produces C:

P (y1, . . . , yn | D) =
nY

i=1

P (yi|D) :=
nY

i=1

es(xi,yi)P
x2Xi

es(xi,x)

• The coreference score s(xi, xj) of two spans xi and xj is defined as:

s(xi, xj) :=

(
0 xj = ✏

se(xi) + se(xj) + sa(xi, xj) xj 6= ✏

with expression score se(x) of x, sa(xi, xj) antecedent score of xj for xi
Statistical NLP VIII Neural Networks © Wachsmuth 2024 51

Coreference Resolution
Architecture and Training

Span representation

• Word embeddings for semantics of words
• Character embeddings for unknown words

… … … … …

… … … … …

Apple calledis AppleInc.

c-emb1 c-emb2 c-emb3 c-emb4 c-emb5

w-emb1 w-emb2 w-emb3 w-emb4 w-emb5

context1 context2 context3 context4 context5

Apple Inc. Inc. is called Apple

sa(x1,x2) sa(x1,x3) sa(x2,x3)

se(x1) se(x2) sa(x3)

s(x1,x2) s(x1,x3) s(x2,x3)

• Bi-LSTM to encode span sentence context

• Attention to imitate head words in spans

Score prediction

• FFN for expression scores se(x) of spans
• FFN for antecedent scores sa(xi, xj) of two spans

Extra features: Span distance, span width, genre, speaker

• Formula+Softmax for coreference scores s(xi, xj)

Training

• Goal. Maximize matches of gold coreference pairs over all spans
Hyperparameters partly fixed, partly optimized during validation

Statistical NLP VIII Neural Networks © Wachsmuth 2024 52

Coreference Resolution
Evaluation

Data (Pradhan et al., 2012)

• 2802 training, 343 validation, and 348 test texts from mixed genres
• Data contains only gold clusters of correct expressions i.

Results
• Reproduction of gold clusters, averaged over 3 coreference metrics

Coreference resolution approach F1-score
Learning of global entity representations (Wiseman et al., 2016) 0.642
Pair ranking with reinforcement learning (Clark and Manning, 2016) 0.657
Neural end-to-end approach (Lee et al., 2017) 0.688

Benefit of attention

• Long phrases often correctly matched over multiple sentences:

[...] looking for a region of central Italy bordering the Adriatic Sea.
The area is mostly mountainous and includes Mt. Corno, the highest
peak of the Apennines. It also includes a lot of sheep, [...]

Statistical NLP VIII Neural Networks © Wachsmuth 2024 53

Conclusion

Conclusion

Neural networks

• The current default technique for any NLP task
• Neural architectures compose many processing units
• Features learned automatically as weighted functions x1 x2 xm

y1 y2 yk…

…

…

…

… …

Input layer

Hidden layers

Output layer

Feedforward neural networks

• Propagate input forward through mutiple layers
• Trained with the backpropagation algorithm
• Used for classification and scoring

x0

x1

x2

h0
(1)

h1
(1)

h2
(1)

h3
(1)

h0
(2)

h1
(2)

h2
(2)

h3
(2)

y1

y2

input hidden output

w1
(1
1
)

w
0
(1
1

)

w 2
(1 1

)

= 1 = 1 = 1

Recurrent neural networks

• Networks with cycles in their unit connections
• Rolled-out version trained with backpropagation, too
• Used for sequence labeling and language modeling xt0 xt1 xt2

yt1 yt2

ht
(1
0
) ht

(1
1
) ht

(1
2
)

xt

yt

ht
(1)

Statistical NLP VIII Neural Networks © Wachsmuth 2024 55

References

Much content and examples based on
• Jurafsky and Martin (2021). Daniel Jurafsky and James H. Martin. Speech and

Language Processing: An Introduction to Natural Language Processing, Speech
Recognition, and Computational Linguistics. Draft or 3rd edition, December 29, 2021.
https://web.stanford.edu/ jurafsky/slp3/

• Stein and Lettmann (2020). Benno Stein and Theodor Lettmann. Part “Neural
Networks” of the Lecture Slides on “Machine Learning”. 2022.
https://webis.de/lecturenotes.html#machine-learning

Statistical NLP VIII Neural Networks © Wachsmuth 2024 56

https://web.stanford.edu/~jurafsky/slp3/)
https://webis.de/lecturenotes.html#machine-learning

References

Other references
• Clark and Manning (2016). Kevin Clark and Christopher D. Manning. Deep

Reinforcement Learning for Mention-Ranking Coreference Models. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, pages
2256–2262, 2016.

• Kingma and Ba (2015). Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, 2015.

• Lee et al. (2017). Kenton Lee, Luheng He, Mike Lewis, Luke Zettlemoyer. End-to-end
Neural Coreference Resolution. In Proceedings of the 2017 Conference on Empirical
Methods of Natural Language Processing, pages 188–197, 2017.

• Pradhan et al. (2012). Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga
Uryupina, and Yuchen Zhang. CoNLL-2012 Shared Task: Modeling Multilingual
Unrestricted Coreference in OntoNotes. In Joint Conference on EMNLP and
CoNLL-Shared Task, pages 1–40, 2012.

• Wiseman et al. (2016). Sam Wiseman, Alexander M. Rush, and Stuart M. Shieber.
Learning Global Features for Coreference Resolution. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 994–1004, 2016.

Statistical NLP VIII Neural Networks © Wachsmuth 2024 57

