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Learning Objectives

Concepts

• How to prepare datasets for supervised learning
• How to employ classification within NLP
• How to employ regression within NLP

Methods

• Classification of a text with support vector machines
• Engineering of features for a given text analysis task
• Scoring of texts with linear regression

Tasks

• Sentiment polarity classification
• Sentiment scoring
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Outline of the Course
I. Overview

II. Basics of Data Science

III. Basics of Natural Language Processing

IV. Representation Learning

V. NLP using Clustering

VI. NLP using Classification and Regression
• Introduction
• Data Preparation
• Supervised Classification
• Supervised Regression
• Conclusion

VII. NLP using Sequence Labeling

VIII. NLP using Neural Networks

IX. NLP using Transformers

X. Practical Issues
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Introduction



Classification and Regression

Classification
• The task to assign an instance to the most likely of a

set of k > 1 predefined classes
• Class values (aka labels) are interpreted as nominal.

Even in case the values actually have an order or distance

class?

Regression
• The task to assign an instance to the most likely

value from a real-valued scale
• Values are continuous, but possibly have upper and

lower bounds.

value on
y-axis?

Use of supervised learning

• Hand-crafted rules/arithmetics could be used to predict classes/values.
• With sufficient data, supervised learning is mostly more successful.
• We restrict our view to feature-based methods here.

Neural methods follows later in Lecture Part VIII.
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Classification and Regression
NLP using Supervised Classification and Regression

Feature-based text classification (regression analog)

• Supervised classification based on features of texts
• Input. A set of texts or text spans O, represented in a feature space X

(in training with class information C)
• Output. A class c for each o 2 O, and a model y : X ! C

Input
texts

Text
preprocessing

Feature
computation

Vector
classification

One class
per text

Challenges of feature-based methods

• The main task is to develop features that help solve a given task.
• In addition, a suitable learning algorithm needs to be chosen.

Notice
• Neural methods may incorporate features as part of the prediction, too.

Statistical NLP VI Classification © Wachsmuth 2024 6



Classification and Regression
Evaluation and Application

Evaluation of supervised classification

• Goal. Classify as many test instances as possible
correctly (from all or particular classes).

• Measures. Accuracy, precision, recall, F1-score

classification
errors

Evaluation of supervised regression

• Goal. Minimize the mean difference between
predicted and correct test values.

• Measures. Mean absolute error, mean squared error
regression
errors

Applications in NLP

• Classification. Deciding about span boundaries, span types, text labels,
relations between spans, relation types, ...

• Regression. Assigning scores and ratings, estimating probabilities, ...
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Dataset Preparation

Why data preparation?

• Not always, the annotations in a corpus match the task
instances required for supervised learning.

Typical preparations

• Instance creation. Add missing “negative” instances, e.g., entity corpora
only show what is an entity:

“[Jaguar]ORG is named after the animal jaguar.”

• Variable mapping. Map annotations to other target variables, especially
for abstraction or unification:

Ratings 1–2! “negative”, 3! discard, 4–5! “positive”

• Dataset balancing. Make the distribution of the target variable uniform:

1000 negative, 600 neutral, 800 positive! 600 negative, 600 neutral, 600 positive
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Dataset Preparation
Instance Creation

Why creating instances?

• In many classification tasks, one (“positive”) class is in the focus.
• Other classes may not be annotated, or are more specific than needed.

False token boundaries spans that are not entities different neutral sentiments

Defining the negative class

• What is seen as a negative instance is a design decision.
• This should be based on what a classifier should be used for.
• Trivial cases may distract classifiers from learning relevant differences.

Example: Negative instances in person name recognition

“[tim]PER works in [cupertino]LOC . [san fran]LOC is his home. as a cook, he cooks all day.”

• All other named entities? ! Can distinguish only entity types then
• All other content words? ! Verbs will never be person names
• All other noun phrases? ! Reasonable choice (alternative: map to token-level task)
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Dataset Preparation
Dataset Balancing

Dataset balancing

• The alteration of the distribution of a dataset regarding a target variable,
such that the distribution is uniform afterwards

• Balancing works by either undersampling or oversampling instances
For regression, an alternative is binning, i.e., to make certain intervals uniform.

When to balance?

• Balancing a training set prevents machine learning from being biased
towards majority classes (or values).

• Validation and test sets should usually have representative distributions.

Alternatives to balancing?

• Some optimization procedures can penalize wrong predictions more for
minority instances than for majority instances.

• This is the more sound but also more complex way of preventing bias.
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Dataset Preparation
Undersampling

Balancing with undersampling

• Remove instances of all non-minority classes, until all classes have the
size of the minority class.

• Instances to be removed are usually chosen (pseudo-) randomly.

under-
sampling

Pros and cons

• Pro. All remaining data is real.
• Pro. Downsizing of a dataset makes training less time-intensive.
• Con. Instances that may be helpful in learning are discarded, i.e.,

potentially relevant information is lost.
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Dataset Preparation
Oversampling

Balancing with oversampling

• Add instances of all minority classes, until all classes have the size of
the majority class.

• Usually, the instances to be added are (pseudo-) random duplicates.
In some cases, an alternative is to create artificial instances via interpolation.

over-
sampling

2x
2x

2x

2x

2x

Pros and cons

• Pro. No instance is discarded, i.e., all information is preserved.
• Con. Upsizing of a dataset makes training more time-intensive.
• Con. The importance of some instances is artificially boosted, which

may make features discriminative that are actually noise.
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Supervised Classification

Supervised classification

• The learned prediction of the most likely of a set of k > 1 predefined
nominal classes for an instance

Learning phase (training)

• Input. A set of known instances x(i) with correct output class c(x(i))

• Output. A model X ! C that maps any instance to its output class

X1

X2

X1

X2 decision
boundary

cir
cle
s

sq
ua
res

Application phase (prediction)

• Input. A set of unknown instances x(i) without output classes
• Output. The output class c(x(i)) for each instance
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Supervised Classification
Classification Algorithms

Selected classification algorithms

• Naïve Bayes. Predict classes based on conditional probabilities.
• Decision tree. Stepwise compare instances on single features.
• Random forest. Take the majority vote of several decision trees.

<latexit sha1_base64="E7uN2pXNKcd9v0rf+CT0JQW4pSg="></latexit>

P (c|x) =
P (x|c) · P (c)

P (x)

P (c|x) � P (x1|c) · . . . ·
P (xm|c) · P (c)

6 6
6 6

6 64
42
2

4 1 6 1 14 6 1

• Support vector machine. Maximize the margin between classes.
• Neural network. Learn complex functions from features.

Focus on support vector machines here

• One of the most widely used feature-based classification algorithms
• Often, a good default choice; much theoretical and empirical appeal
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Support Vector Machines

Support vector machine (SVM)

• A learning algorithm that aims to find a linear decision boundary which
maximizes the margin between two classes

• Non-linear classification is possible through the kernel trick (see below).

Large-margin classification

• The margin is the distance from the decision
boundary to all closest instances.

• SVMs maximize the mininum margin of the
boundary to the training instances.
Some instances may be discounted as outliers/noise.

margin
maximized

support
vectors

decision boundary

Support vectors

• A (usually small) subset of training instances that are used by an SVM
to define the decision boundary

• Other instances are not memorized after training.
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Support Vector Machines
Linear SVMs

Decision boundary

• A hyperplane wTx = b, i.e., all points x on it satisfy the equation
• The weight vector w is the normal perpendicular to the hyperplane.
• The intercept term b denotes the distance to the origin, scaled by ||w||.

Training

• Input. A set of n training instances x(i) with class y
(i) = c(x(i)) 2 {�1, 1}

Nominal classes are mapped to –1 and 1.

• Output. A linear classifier y(x) = sign(wTx� b), such that wTx = b

maximizes the minimum distance to instances x(i)

Optimization variants

• Hard margin. Find the best separating hyperplane. This works only for
linearly separable training sets.

• Soft margin. Allow outliers, but penalize them. This always works.
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Support Vector Machines
Linearly Separable Training Sets

Maximum-margin decision boundary

• If the training set is linearly separable, any x(i)

must fulfill either of:

wTx(i) � b � 1 if y(i) = 1

wTx(i) � b  �1 if y(i) = �1

• From this, we can infer:

8i 2 {1, . . . , n} : y
(i) · (wTx(i) � b) � 1

b
||w||

2
||w||

w

w T * x – b = 0

w T * x – b = –1

w T * x – b = 1

• Also, it follows that the size of the margin is 2
||w|| =

b+1
||w|| �

b�1
||w||.

• To maximize the margin, ||w|| must be minimized.

Minimization problem of hard-margin SVMs

• Find w and b, such that ||w|| is minimized, and 8i : y(i) · (wTx(i)� b) � 1.
• The support vectors that represent the hyperplane for these w and b

can be found on a training set.
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Support Vector Machines
Linearly Inseparable Training Sets

Slack variables

• For linearly inseparable training sets, an SVM
can allow instances x(i) to be misclassified via
slack variables ⇠

(i) � 0.
• If ⇠(i) > 0, the margin of x(i) can be less than 1

at a cost C · ⇠(i) proportional to ⇠
(i).

ξ(i)

ξ(j)

X(j)

X(i)

• The SVM then trades the size of the margin
against the number of correctly classified training instances.

Minimization problem of soft-margin SVMs

• Find w, b, and 8i : ⇠(i) � 0, such that ||w|| + C ·
P

i
⇠
(i) is minimized, and

8i : y(i) · (wTx(i) � b) � 1 � ⇠
(i).

• C > 0 is a regularization term, used to control overfitting. It must be
optimized against a validation set.
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Support Vector Machines
Cost Hyperparameter Optimization

The cost hyperparameter C

• If C is small, training instances may be misclassified at low cost.
• As C becomes larger, training misclassifications get more expensive.
• So, the higher C, the more an SVM will fit the training data.

Typical cost optimization process

• First find best magnitude of C on the validation set.
For instance, by testing each C 2 {10�5

, 10�4
, . . . , 104

, 105}

• Then validate more fine-grained C values in this magnitude.
• The best found C is used on the test set (or in the application).

Notice

• Non-linear SVMs often have a second hyperparameter � (see below).
• The combination C and � needs to be optimized in a grid search.
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Support Vector Machines
Non-Linear Classification

Non-linear SVMs

• Some data is only linearly “separable” with many misclassifications.
• As a solution, non-linear SVMs use the kernel trick.

Kernel trick

• Map the original feature space to a higher-dimensional space where it
is (better) linearly separable.

• A linear classifier is then learned for the higher-dimensional space.

• Conceptually. The mapping is a non-linear transformation � : x 7! �(x).
• Practically. A kernel function K is used that computes the dot product of

two transformed instances in the original feature space.
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Support Vector Machines
Kernel Functions

Linear SVMs with kernel functions

• A linear SVM can be specified using dot products K(x,x(j)) = xTx(j) for
an instance x and each support vector x(j):

f (x) := sign(
P

j
y
(j) · K(x,x(j))� b)

Non-linear SVMs with kernel functions

• Replace K above by a kernel function that computes the dot product of
two transformed instances, �(x) and �(x(j)).
For SVM optimization, K must fulfill certain properties omitted here for simplicity.

Common kernel functions
• Polynomial kernels. K(x,x(j)) := (1 + xTx(j))d

A quadratic kernel (d = 2) is often used. d = 1 results in a linear kernel.

• Radial basis function. K(x,x(j)) := e
�� · (x�x(j))2

A more flexible Gaussian distribution, with additional hyperparameter �.

• Kernel functions can also be designed for the specific data at hand.
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Review Sentiment Analysis

Data (Wachsmuth et al., 2014a)

• 2100 English hotel reviews from TripAdvisor
900 training, 600 validation, and 600 test reviews

• Each review has a sentiment score from {1, ..., 5}.

ArguAnaTripAdvisor corpus

420 420 420 420 420

1 2 3 4 5

Case Study: Sentiment Polarity classification (Wachsmuth, 2015)

• Classification of the “global” sentiment label of hotel reviews
• 3-class sentiment. 1–2 mapped to negative, 3 to neutral, 4–5 to positive

Training set balanced with random undersampling

• 5-class sentiment. Each score interpreted as one (nominal) class.

Approach

• Algorithm. Linear SVM with one-versus-all multi-class handling
Cost hyperparameter tuned on validation sets

• Features. Combination of several standard and specific feature types
Details on next slides
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Review Sentiment Analysis
Case Study: Selected Standard Feature Types

Content features

• Token unigrams (bag-of-words). The distribution of all token 1-grams
that occur in at least 5% of all training texts

• Token bigrams/trigrams. Analog for 2-grams and 3-grams

Style features

• POS n-grams. Analog for part-of-speech {1, 2, 3}-grams
• Character trigrams. Analog for character 3-grams
• Lengths. Average numbers of tokens, sentences, tokens/sentence, ...

Target class features

• SentiWordNet scores. Mean positivity,
negativity, and objectivity of all first and
average word senses in SentiWordNet
A lexicon with subjectivity and polarity values
for words (Baccianella et al., 2010).

Statistical NLP VI Classification © Wachsmuth 2024 25



Review Sentiment Analysis
Case Study: Selected Specific Feature Types (1 of 2)

4

statement

positive (1.0)

negative (0.0)

neutral (0.5)

We spent one night at that hotel.  Staff at the front desk was very nice,  the room was clean and cozy,

and the hotel lies in the city center...  but all this never justifies the price, which is outrageous!

background elaboration elaboration contrast

5

321

Local sentiment distribution

• Local sentiment mean, frequencies, changes, and normalized positions

mean 0.6 positive 0.4 neutral 0.4 negative 0.2 (neutral, positive) 0.25 ...

9 normalized positions: (0.5, 0.75, 1.0, 1.0, 1.0, 0.75, 0.5, 0.25, 0.0)

Discourse relation distribution

• Frequency of discourse relations and their combination with sentiment

background 0.25 elaboration 0.5 contrast 0.25 (all others 0.0)

background(neutral, positive) 0.25 elaboration(positive, positive) 0.25 ...
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Review Sentiment Analysis
Case Study: Selected Specific Feature Types (2 of 2)

Sentiment flow patterns (see previous lecture part)

• Compute similarity of sentiment flow to each learned flow pattern.
• Each similarity becomes one global-structure feature for prediction.

Computing
similarities

1

Normalized/abstracted flow One similarity value for each flow pattern Output class or value

0.85 0.5 0.35 0.2 )( , , ,

Learning
prediction

2

This book was different. 
I liked the first part. I could 
relate with Pi on his views 
about God and religion. He 
put into words my feelings 
when he said, “I just want 
to love God“ to the three 
religious leaders (Catholic, 
Muslim, Hindu) when they 
asked him why he practiced 
all three religions. I puzzled 
over the middle while he 
was lost at sea with the 
tiger. I didn't get the island 
at all. But in the end it all 
came together.

neutral

Hypotheses

• Similar flows indicate similar global sentiment. (evaluated below)

• Similar flow patterns occur across review domains. (evaluated later)
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Review Sentiment Analysis
Case Study: Experimental Setup and Hyperparameter Optimization

Experimental setup

• One linear SVM for each
feature type alone and
for their combination

• Training on training set,
tuning on validation set,
test on test set

• Both 3-class and 5-class

Cost hyperparameter tuning

• Tested C values. 0.001,
0.01, 0.1, 1.0, 50.0

• Best C used on test set
• Results shown here for

the 3-class task only

Validation accuracy depending on C

35% 

40% 

45% 

50% 

55% 

60% 

65% 

70% 

75% 

0.001 0.01 0.1 1 50 

Accuracy

C

All features

Content 
and style

Discourse
relations

Local 
sentiment

Flow
patterns
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Review Sentiment Analysis
Case Study: Results and Discussion

Effectiveness results on test set (accuracy)

Feature type # Features 3 Classes 5 Classes
All standard features 1026 58.9% 43.2%
Local sentiment distribution 50 69.8% 42.2%
Discourse relation distribution 75 65.3% 40.6%
Sentiment flow patterns 42 63.1% 39.7%
Combination of features 1193 71.5% 48.1%
Random baseline 33.3% 20.0%

Discussion

• Standard features. Worse than specific features in the 3-class task
• Combination of features. Works best, indicating they are complimentary
• Sentiment flow patterns. Impact more visible across domains

This will be demonstrated in Lecture Part IX.

• Particularly the 5-class accuracy seems insufficient.
• Classification misses to model the ordinal relation between classes.
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Supervised Regression

Supervised regression

• The learned prediction of the most likely value from a real-valued scale
for an instance

Learning phase (training)

• Input. A set of known instances x(i) with correct output value y = c(x(i))

• Output. A model X ! C that maps any instance to its output value

X1

y y
regression
model

X1

Application phase (prediction)

• Input. A set of unknown instances x(i) without output value
• Output. The predicted output value y(x(i)) for each instance
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Supervised Regression
Regression Algorithms

Selected supervised regression algorithms

• Linear regression. Predict output values
using a learned linear function.

• Neural network. Learn complex functions
on features

• Support vector regression. Maximize the
flatness of a regression model.

Focus on linear regression here

• Shows the general idea of regression more clearly
• Despite its simplicity, often effective and well-interpretable
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Linear Regression

Linear regression

• A supervised learning algorithm that learns to predict a real-valued
output under a linear model function:

y(x) := wTx = w0 +
mX

j=1

wj · xj = w0 + w1 · x1 + . . . + wm · xm

• The weight vector w = (w0, w1, . . . , wm) is learned on training instances.

Training of a linear regression model

• Input. A set of n training pairs (x(i)
, y

(i)), where x(i) is an instance and
y
(i) = c(x(i)) its correct output value

• Output. The model y(x) found to minimize the regression error, i.e., the
deviation of the predictions y(x(i)) from the correct values y

(i)

Loss function in linear regression

• Usually, a regression error is quantified as the residual sum of squares.
Statistical NLP VI Classification © Wachsmuth 2024 33



Linear Regression
Optimization

Residual sum of squares (RSS)

• The sum of squared differences between predicted output values y(x(i))

and correct output values y
(i) over all instances x(i):

RSS(w) :=
nX

i=1

(y(i) � y(x(i)))2 =
nX

i=1

(y(i) �wTx(i))2

• RSS works as a loss function for any regression function y (linear or
not) and for any dimensionality of x(i).

Minimization of RSS

• The best weight vector ŵ is found by
minimizing RSS(w) on the training set:

ŵ := argmin
w2Rm+1

RSS(w) w1
w0

R
SS

(w
)

• If y is linear, RSS(w) is a convex function with a single, global optimum.
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Linear Regression
Regularization and Optimization

RSS regularization

• To avoid overfitting, a regularization term is added to the cost function,
which prevents the model y from becoming too complex.

RSSreg(w) :=
nX

i=1

(y(i) �wTx(i))2 + � ·
mX

j=0

w
2
j

• The regularization term restricts the absolute values of the weights w.
• The hyperparameter � trades the training error against model simplicity.

RSS optimization

• The most common optimization method is gradient descent.
• It stepwise adapts a model y based on the gradient of the loss function.
• We here look at the variant stochastic gradient descent (SGD), which

adapts y to a single training instance in each step.
• Pro. Scales well, allows for online learning and stochastic sampling
• Con. Does not guarantee to find the minimum
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Linear Regression
Pseudocode of Linear Regression with SGD

Signature

• Input. n training instances X of the form (x, y), a learning rate ⌘, and a
number of epochs k.

• Output. A vector w with one weight wj for each feature xj 2 x, 1jm.

linearRegressionWithSGD(List<Instance>X,double ⌘,int k)
1. List<double> w  getMRandomValues(-1, 1)

2. for int l  1 to k do
3. for each Instance (x(i)

, y
(i)) in X do

4. double y(x(i))  wTx(i) = w0 + w1 · x(i)
1 + . . .+ wm · x(i)

m

5. List<double> gradient  @

@wj

�
(y(i) � y(x(i))2 + �

n
·
P

m

j=0 w
2
j

�

6. w  w � ⌘ · gradient

7. return w

Impact of hyperparameters
• Number of epochs. The higher k, the more y will fit the data.
• Learning rate. Higher ⌘ may speed up learning, but may fail to optimize.

Statistical NLP VI Classification © Wachsmuth 2024 36



Linear Regression
Gradient Descent: Example (1 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (2 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (3 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (4 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (5 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (6 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (7 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (8 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Linear Regression
Gradient Descent: Example (9 out of 9)

Learning of a linear regression model

• Feature space X (left) and loss L = RSSreg(w) (right) in training

Note on example

• A regression model y = w0 + w1 · x1 is learned for one single feature x1.
• Each pair w0, w1 defines one candidate model.
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Review Sentiment Analysis
Case Study: Sentiment Scoring of Hotel Reviews (Wachsmuth et al., 2014b)

Task

• Regression of the numeric global sentiment score of a review
• 5-class sentiment. Each score used as numeric value

Data as for classification above

Approach

• Algorithm. Linear regression with stochastic gradient descent (SGD)
Epoch hyperparameter tuned on validation sets, other parameters fixed

• Features. Exactly as for classfication above

Experimental setup

• Linear regressor for each feature type alone and for their combination
• Training on training set, tuning on validation set, test on test set
• Main measure. Root mean squared error (RMSE)

Mean absolute error (MAE) also given below
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Review Sentiment Analysis
Case Study: Main Features used in Regression

Interpretability of linear regression

• Linear regression simply assigns one weight to each given feature.

Top features of the best model
• +0.6457 First local sentiment in text
• +0.2768 Proportion of neutral clauses
• +0.2186 Discourse relation: elaboration(positive, positive)
• +0.2001 Last local sentiment in text
• +0.1682 # Clauses per sentence
• +0.1681 SentiWordnet objectivity score
• +0.1477 Flow pattern: 10x positive, 10x negative, 10x positive

• –0.0691 Token bigram “. i” (origin: next sentence starts with “I ...”)
• –0.0714 Local sentiment bigram (negative, neutral)
• –0.0714 Character trigram “t o” (“bit of”, “just okay”, “not one”, “without our”, ...)
• –0.0800 Local sentiment bigram (neutral, neutral)
• –0.0858 Character trigram “d s” (“had some”, “had stayed”, “‘and saw”, ...)
• –0.1246 Local sentiment change (negative, neutral)
• –0.2438 Discourse relation: elaboration(negative, negative)
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Review Sentiment Analysis
Case Study: Results and Discussion

Effectiveness results on test set

Feature type # Features MAE RMSE
Standard features 1026 0.90 1.11
Local sentiment distribution 50 0.77 0.99
Discourse relation distribution 75 0.82 1.01
Sentiment flow patterns 42 0.86 1.07
Combination of features 1193 0.73 0.93
Random baseline 1.20 1.41

Discussion

• Standard features. Worst here (unlike in classification); this suggests
that they sometimes fail strongly.

• Local sentiment distribution. Consistently best feature in this case study
• Combination of features. Improves over single feature types here, too

• The best MAE and RMSE values do not seem fully convincing.
• More advanced techniques may be needed (neural methods?).
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Review Sentiment Analysis
Case Study: Error Analysis (Ground-truth Scores vs. Predictions)

Visualization

• Scatter plot of the
ground-truth scores
in the test set vs.
predicted scores of
the best model

Observations

• General tendency
of regressor okay.

• Clear outliers exist
for all scores.

• Few high and low
predicted scores
Typical for regression

(cross size reflects regression error)
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Conclusion



Conclusion

NLP using classification and regression

• Decisions about and assessment of text properties
• Usually done with supervised learning
• Datasets may have to be prepared for learning.

2x
2x

2x

2x

2x

Supervised classification

• Learning to predict nominal labels of texts / text spans
• One of the most used learning algorithms is the SVM.
• Feature engineering is key to high effectiveness. b

||w||

2
||w||

w

w T * x – b = 0

w T * x – b = –1

w T * x – b = 1

Supervised regression

• Learning to predict numeric values of texts / text spans
• Simple linear regression is effective and interpretable.
• Also here: Feature engineering is key.
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