Publications of the Institute

Showing results 169 - 210 out of 276

2020


Heindorf, S., Scholten, Y., Wachsmuth, H., Ngonga Ngomo, A. C., & Potthast, M. (2020). CauseNet: Towards a Causality Graph Extracted from the Web. In CIKM' 2020: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (pp. 3023-3030). Association for Computing Machinery (ACM). https://doi.org/10.1145/3340531.3412763
Kiesel, J., Lang, K., Wachsmuth, H., Hornecker, E., & Stein, B. (2020). Investigating Expectations for Voice-based and Conversational Argument Search on the Web. In CHIIR 2020: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (pp. 53-62). Association for Computing Machinery, Inc. https://doi.org/10.1145/3343413.3377978
Lindauer, M., & Hutter, F. (2020). Best Practices for Scientific Research on Neural Architecture Search. Journal of Machine Learning Research, 21. https://arxiv.org/abs/1909.02453
Lindauer, M., Hutter, F., Biedenkapp, A., & Bozkurt, F. (2020). VERFAHREN, VORRICHTUNG UND COMPUTERPROGRAMM ZUM EINSTELLEN EINES HYPERPARAMETERS. (Patent No. EP3748551).
Nouri, Z., Wachsmuth, H., & Engels, G. (2020). Mining Crowdsourcing Problems from Discussion Forums of Workers. In D. Scott, N. Bel, & C. Zong (Eds.), Proceedings of the 28th International Conference on Computational Linguistics (pp. 6264-6276). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2020.coling-main.551
Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., & Hutter, F. (2020). Learning Step-Size Adaptation in CMA-ES. In T. Bäck, M. Preuss, A. Deutz, M. Emmerich, H. Wang, C. Doerr, & H. Trautmann (Eds.), Parallel Problem Solving from Nature – PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I (pp. 691-706). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12269). Springer. https://doi.org/10.1007/978-3-030-58112-1_48
Spliethöver, M., & Wachsmuth, H. (2020). Argument from Old Man's View: Assessing Social Bias in Argumentation. In E. Cabrio, & S. Villata (Eds.), Proceedings of the 7th Workshop on Argument Mining (pp. 76-87). Association for Computational Linguistics (ACL). https://aclanthology.org/2020.argmining-1.9
Syed, S., Chen, W. F., Hagen, M., Stein, B., Wachsmuth, H., & Potthast, M. (2020). Task Proposal: Abstractive Snippet Generation for Web Pages. In B. Davis, Y. Graham, J. Kelleher, & Y. Sripada (Eds.), Proceedings of The 13th International Conference on Natural Language Generation (pp. 237-241). Association for Computational Linguistics (ACL). https://aclanthology.org/2020.inlg-1.30
Tornede, A., Wever, M., & Hüllermeier, E. (2020). Extreme Algorithm Selection with Dyadic Feature Representation. In A. Appice, G. Tsoumakas, Y. Manolopoulos, & S. Matwin (Eds.), Discovery Science - 23rd International Conference, DS 2020, Proceedings (pp. 309-324). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12323 LNAI). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-61527-7_21
Tornede, A., Wever, M., Werner, S., Mohr, F., & Hüllermeier, E. (2020). Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. In Proceedings of The 12th Asian Conference on Machine Learning (Vol. 129, pp. 737-752). (Proceedings of Machine Learning Research). https://proceedings.mlr.press/v129/tornede20a.html
Tornede, A., Wever, M., & Hüllermeier, E. (2020). Towards Meta-Algorithm Selection. (4th Workshop on Meta-Learning at NeurIPS 2020). Advance online publication. http://arxiv.org/abs/2011.08784v1
Wachsmuth, H., & Werner, T. (2020). Intrinsic Quality Assessment of Arguments. In D. Scott, N. Bel, & C. Zong (Eds.), COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference (pp. 6739-6745). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2020.coling-main.592
Wever, M., Tornede, A., Mohr, F., & Hüllermeier, E. (2020). LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-label Classification. In M. R. Berthold, A. Feelders, & G. Krempl (Eds.), Advances in Intelligent Data Analysis XVIII - 18th International Symposium on Intelligent Data Analysis, IDA 2020, Proceedings (pp. 561-573). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12080 LNCS). Springer. https://doi.org/10.1007/978-3-030-44584-3_44

2019


Ajjour, Y., Wachsmuth, H., Kiesel, J., Potthast, M., Hagen, M., & Stein, B. (2019). Data Acquisition for Argument Search: The args.me Corpus. In C. Benzmüller, & H. Stuckenschmidt (Eds.), KI 2019: Advances in Artificial Intelligence: 42nd German Conference on AI, Proceedings (pp. 48-59). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11793 LNAI). Springer Verlag. https://doi.org/10.1007/978-3-030-30179-8_4
Ajjour, Y., Alshomary, M., Wachsmuth, H., & Stein, B. (2019). Modeling Frames in Argumentation. In K. Inui, J. Jiang, V. Ng, & X. Wan (Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 2922-2932). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1290
Alshomary, M., & Wachsmuth, H. (2019). Siamese Neural Network for Same Side Stance Classification. In Same Side Stance Classification Shared Task 2019: Proceedings of the Same Side Stance Classification Shared Task organized as a part of the 6th Workshop on Argument Mining (ArgMining 2019) and co-located with the the 57th Annual Meeting of the Association for Computational Linguistics (ACL19) (pp. 12-16). (CEUR Workshop Proceedings; Vol. 2921). https://ceur-ws.org/Vol-2921/paper1.pdf
Alshomary, M., Völske, M., Licht, T., Wachsmuth, H., Stein, B., Hagen, M., & Potthast, M. (2019). Wikipedia Text Reuse: Within and Without. In B. Stein, N. Fuhr, L. Azzopardi, P. Mayr, D. Hiemstra, & C. Hauff (Eds.), Advances in Information Retrieval: 41st European Conference on IR Research, ECIR 2019, Proceedings (pp. 747-754). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11437 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-15712-8_49
Biedenkapp, A., Bozkurt, H. F., Hutter, F., & Lindauer, M. (2019). Towards White-box Benchmarks for Algorithm Control. Advance online publication. https://arxiv.org/abs/1906.07644
Eggensperger, K., Lindauer, M., & Hutter, F. (2019). Pitfalls and Best Practices in Algorithm Configuration. Journal of Artificial Intelligence Research, 64, 861-893. https://doi.org/10.1613/jair.1.11420
El Baff, R., Wachsmuth, H., Al-Khatib, K., Stede, M., & Stein, B. (2019). Computational Argumentation Synthesis as a Language Modeling Task. In Proceedings of The 12th International Conference on Natural Language Generation (pp. 54-64). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/W19-8607
Fuks, L., Awad, N., Hutter, F., & Lindauer, M. (2019). An evolution strategy with progressive episode lengths for playing games. In S. Kraus (Ed.), Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 (pp. 1234-1240). (IJCAI International Joint Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2019/172
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller, P., & Hutter, F. (2019). BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters. Advance online publication. https://arxiv.org/pdf/1908.06756
Lindauer, M., van Rijn, J. N., & Kotthoff, L. (2019). The algorithm selection competitions 2015 and 2017. Artificial intelligence, 272, 86-100. https://doi.org/10.1016/j.artint.2018.10.004
Lindauer, M., Feurer, M., Eggensperger, K., Biedenkapp, A., & Hutter, F. (2019). Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameters. In DSO Workshop at IJCAI Advance online publication. https://arxiv.org/abs/1908.06674
Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., Urban, M., Burkart, M., Dippel, M., Lindauer, M. T., & Hutter, F. (2019). Towards Automatically-Tuned Deep Neural Networks. In Automated Machine Learning https://doi.org/10.1007/978-3-030-05318-5_7
Mohr, F., Wever, M. D., Tornede, A., & Hüllermeier, E. (2019). From Automated to On-The-Fly Machine Learning. In INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik–Informatik für Gesellschaft https://dl.gi.de/handle/20.500.12116/24989
Potthast, M., Gienapp, L., Euchner, F., Heilenkötter, N., Weidmann, N., Wachsmuth, H., Stein, B., & Hagen, M. (2019). Argument Search: Assessing Argument Relevance. In SIGIR 2019: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1117-1120). Association for Computing Machinery, Inc. https://doi.org/10.1145/3331184.3331327
Skitalinskaya, G., Klaff, J., & Spliethöver, M. (2019). CLEF ProtestNews Lab 2019: Contextualized word embeddings for event sentence detection and event extraction. In CLEF 2019 Working Notes: Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum (CEUR Workshop Proceedings; Vol. 2380). https://ceur-ws.org/Vol-2380/paper_118.pdf
Spliethöver, M., Klaff, J., & Heuer, H. (2019). Is It Worth the Attention? A Comparative Evaluation of Attention Layers for Argument Unit Segmentation. In B. Stein, & H. Wachsmuth (Eds.), Proceedings of the 6th Workshop on Argument Mining (pp. 74-82). Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-4509
Stein, B., & Wachsmuth, H. (2019). Introduction. In B. Stein, & H. Wachsmuth (Eds.), Proceedings of the 6th Workshop on Argument Mining Association for Computational Linguistics (ACL).
Stein, B., & Wachsmuth, H. (2019). Introduction. In B. Stein, & H. Wachsmuth (Eds.), Proceedings of the 6th Workshop on Argument Mining (pp. III-III). Association for Computational Linguistics (ACL). https://aclanthology.org/W19-4500
Stein, B., & Wachsmuth, H. (Eds.) (2019). Proceedings of the 6th Workshop on Argument Mining. Association for Computational Linguistics (ACL). https://aclanthology.org/W19-45
Tornede, A., Wever, M. D., & Hüllermeier, E. (2019). Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. In 29th Workshop Computational Intelligence https://ris.uni-paderborn.de/download/15011/17060/ci_workshop_tornede.pdf
Wachsmuth, H. (2019). Argumentation Mining. By Manfred Stede and Jodi Schneider (University of Potsdam, University of Illinois at Urbana-Champaign). Morgan & Claypool (Synthesis Lectures on Human Language Technologies, edited by Graeme Hirst, volume 40), 2018, xvi+175 pp; paperback, ISBN 978-1-68173-459-0; ebook, ISBN 978-1-68173-460-6; doi:10.2200/S00883ED1V01Y201811HLT040: Argumentation Mining. Computational Linguistics, 45(3). https://doi.org/10.1162/coli_r_00358
Wever, M. D., Mohr, F., Tornede, A., & Hüllermeier, E. (2019). Automating Multi-Label Classification Extending ML-Plan. In ICML 2019 Workshop AutoML https://ris.uni-paderborn.de/download/10232/13177/Automating_MultiLabel_Classification_Extending_ML-Plan.pdf

2018


Ajjour, Y., Wachsmuth, H., Kiesel, D., Riehmann, P., Fan, F., Castiglia, G., Adejoh, R., Fröhlich, B., & Stein, B. (2018). Visualization of the Topic Space of Argument Search Results in args.me. In E. Blanco, & W. Lu (Eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations) (pp. 60-65). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/d18-2011
Al-Khatib, K., Wachsmuth, H., Lang, K., Herpel, J., Hagen, M., & Stein, B. (2018). Modeling Deliberative Argumentation Strategies on Wikipedia. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers) (pp. 2545-2555). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/p18-1237
Biedenkapp, A., Marben, J., Lindauer, M., & Hutter, F. (2018). CAVE: Configuration Assessment, Visualization and Evaluation. In P. M. Pardalos, R. Battiti, M. Brunato, & I. Kotsireas (Eds.), Learning and Intelligent Optimization (pp. 115-130). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11353 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-05348-2_10
Bonfert, M., Spliethöver, M., Arzaroli, R., Lange, M., Hanci, M., & Porzel, R. (2018). If You Ask Nicely: A Digital Assistant Rebuking Impolite Voice Commands. In Proceedings of the 20th ACM International Conference on Multimodal Interaction (pp. 95-102). Association for Computing Machinery (ACM). https://doi.org/10.1145/3242969.3242995
Chen, W. F., Wachsmuth, H., Al-Khatib, K., & Stein, B. (2018). Learning to Flip the Bias of News Headlines. In Proceedings of the 11th International Conference on Natural Language Generation (pp. 79-88). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/W18-6509