© M4 Fotostudio Mirja John
Prof. Dr. rer. nat. Marius Lindauer
Address
Welfengarten 1
30167 Hannover
Building
Room
© M4 Fotostudio Mirja John
Prof. Dr. rer. nat. Marius Lindauer
Address
Welfengarten 1
30167 Hannover
Building
Room

In recent years, AI achieved impressive results in different fields, incl. in computer vision, natural language processing and reinforcement learning. These breakthroughs show how AI will influence and change our daily lives, business and even research in many aspects. With the advent of deep learning and also traditional AI methods, such as AI planning, SAT solving or evolutionary algorithms, a multitude of different techniques are available these days. However, applying these techniques is challenging, and even experienced AI developers are faced with several difficult design decisions, making the development of new AI applications a tedious, error-prone and time-consuming task. Therefore, we develop new approaches to increase efficiency in AI application development by reducing the required expert knowledge, improving development time and reducing chances of error. We do this with democratization of AI and social responsibility in mind.

Research Interests

Actually, I'm interested in many topics related to AutoML, machine learning, AI and interdisciplinary applications of these. Here are some selected topics:

  • Green-AutoML
  • Human-centered AutoML
  • Dynamic Algorithm Configuration
  • Generalization of Reinforcement Learning
  • Applications to production or health/medicine

Curriculum Vitae

Publications

Showing results 1 - 20 out of 128

2024


Becktepe, J., Dierkes, J., Benjamins, C., Mohan, A., Salinas, D., Rajan, R., Hutter, F., Hoos, H., Lindauer, M., & Eimer, T. (2024). ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning. In 17th European Workshop on Reinforcement Learning (EWRL 2024) Advance online publication.
Benjamins, C., Cenikj, G., Nikolikj, A., Mohan, A., Eftimov, T., & Lindauer, M. (2024). Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving Generalization. In Genetic and Evolutionary Computation Conference (GECCO) Association for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation (SIGEVO). Advance online publication.
Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M., & Eggensperger, K. (2024). AMLTK: A Modular AutoML Toolkit in Python. The Journal of Open Source Software, 9(100), Article 6367. https://doi.org/10.21105/joss.06367
Deng, D., & Lindauer, M. (2024). Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach. (ArXiv). Advance online publication. https://arxiv.org/abs/2406.05088
Eimer, T., Hutter, F., Lindauer, M., & Biedenkapp, A. (2024). Verfahren zum Trainieren eines Algorithmus des maschinellen Lernens durch ein bestärkendes Lernverfahren. (Patent No. DE102022210480A1). Deutsches Patent- und Markenamt (DPMA). https://worldwide.espacenet.com/patent/search/family/090246319/publication/DE102022210480A1?q=pn%3DDE102022210480A1
Giovanelli, J., Tornede, A., Tornede, T., & Lindauer, M. (2024). Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th conference on AAAI (pp. 12172-12180). (Proceedings of the AAAI Conference on Artificial Intelligence; Vol. 38, No. 11). https://doi.org/10.48550/arXiv.2309.03581, https://doi.org/10.1609/aaai.v38i11.29106
Hennig, L., Tornede, T., & Lindauer, M. (2024). Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks. In 5th Workshop on practical ML for limited/low resource settings Advance online publication. https://doi.org/10.48550/arXiv.2404.01965
Lindauer, M., Karl, F., Klier, A., Moosbauer, J., Tornede, A., Müller, A., Hutter, F., Feurer, M., & Bischl, B. (2024). Position Paper: A Call to Action for a Human-Centered AutoML Paradigm. In Proceedings of the international conference on machine learning Advance online publication.
Mohan, A., Zhang, A., & Lindauer, M. (2024). Structure in Deep Reinforcement Learning: A Survey and Open Problems. Journal of Artificial Intelligence Research. Advance online publication. https://arxiv.org/abs/2306.16021
Mohan, A., & Lindauer, M. (Accepted/in press). Towards Enhancing Predictive Representations using Relational Structure in Reinforcement Learning. In The 17th European Workshop on Reinforcement Learning (EWRL 2024)
Neutatz, F., Lindauer, M., & Abedjan, Z. (2024). AutoML in Heavily Constrained Applications. VLDB Journal, 33(4), 957–979. https://doi.org/10.48550/arXiv.2306.16913, https://doi.org/10.1007/s00778-023-00820-1
Neutatz, F., Lindauer, M., & Abedjan, Z. (Accepted/in press). [Experiments & Analysis] How Green is AutoML for Tabular Data? In Proceedings of EDBT 2025
Theodorakopoulos, D., Stahl, F., & Lindauer, M. (Accepted/in press). Hyperparameter Importance Analysis for Multi-Objective AutoML. In Proceedings of the european conference on AI (ECAI)
Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H., & Lindauer, M. (2024). AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks. Transactions on Machine Learning Research. Advance online publication. https://doi.org/10.48550/arXiv.2306.08107
Zöller, M., Lindauer, M., & Huber, M. (Accepted/in press). auto-sktime: Automated Time Series Forecasting. In Proceedings of the 18TH Learning and Intelligent Optimization Conference (LION) https://arxiv.org/abs/2312.08528

2023


Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2023). Contextualize Me – The Case for Context in Reinforcement Learning. Transactions on Machine Learning Research, 2023(6). Advance online publication. https://doi.org/10.48550/arXiv.2202.04500
Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2023). Extended Abstract: Contextualize Me -- The Case for Context in Reinforcement Learning. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) Advance online publication. https://openreview.net/forum?id=DJgHzXv61b
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Accepted/in press). Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. In AutoML Conference 2023 PMLR.
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Accepted/in press). Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. In GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference Companion Association for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation (SIGEVO).
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.-L., Deng, D., & Lindauer, M. (2023). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), Article e1484. https://doi.org/10.1002/widm.1484