© M4 Fotostudio Mirja John
Prof. Dr. rer. nat. Marius Lindauer
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum
© M4 Fotostudio Mirja John
Prof. Dr. rer. nat. Marius Lindauer
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum

In recent years, AI achieved impressive results in different fields, incl. in computer vision, natural language processing and reinforcement learning. These breakthroughs show how AI will influence and change our daily lives, business and even research in many aspects. With the advent of deep learning and also traditional AI methods, such as AI planning, SAT solving or evolutionary algorithms, a multitude of different techniques are available these days. However, applying these techniques is challenging, and even experienced AI developers are faced with several difficult design decisions, making the development of new AI applications a tedious, error-prone and time-consuming task. Therefore, we develop new approaches to increase efficiency in AI application development by reducing the required expert knowledge, improving development time and reducing chances of error. We do this with democratization of AI and social responsibility in mind.

Research Interests

Actually, I'm interested in many topics related to AutoML, machine learning, AI and interdisciplinary applications of these. Here are some selected topics:

  • Green-AutoML
  • Human-centered AutoML
  • Dynamic Algorithm Configuration
  • Generalization of Reinforcement Learning
  • Applications to production or health/medicine

Curriculum Vitae

Publications

Zeige Ergebnisse 21 - 40 von 128

2023


Denkena, B., Dittrich, M.-A., Noske, H., Lange, D., Benjamins, C., & Lindauer, M. (2023). Application of machine learning for fleet-based condition monitoring of ball screw drives in machine tools. The international journal of advanced manufacturing technology, 127(3-4), 1143-1164. https://doi.org/10.1007/s00170-023-11524-9
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Extended Abstract: Hyperparameters in Reinforcement Learning and How To Tune Them. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) Vorabveröffentlichung online. https://openreview.net/forum?id=N3IDYxLxgtW
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Hyperparameters in Reinforcement Learning and How to Tune Them. In ICML'23: Proceedings of the 40th International Conference on Machine Learning (S. 9104–9149). Artikel 366 https://doi.org/10.48550/arXiv.2306.01324, https://doi.org/10.5555/3618408.3618774
Loni, M., Mohan, A., Asadi, M., & Lindauer, M. (Angenommen/im Druck). Learning Activation Functions for Sparse Neural Networks. In Second International Conference on Automated Machine Learning PMLR. https://arxiv.org/abs/2305.10964
Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., & Hutter, F. (2023). PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning. In Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS) Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2306.12370
Mohan, A., Zhang, A., & Lindauer, M. (Angenommen/im Druck). A Patterns Framework for Incorporating Structure in Deep Reinforcement Learning. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=KkKWsPLlAx
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (2023). AutoRL Hyperparameter Landscapes. In Second International Conference on Automated Machine Learning PMLR. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2304.02396
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (Angenommen/im Druck). Extended Abstract: AutoRL Hyperparameter Landscapes. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=4Zu0l5lBgc
Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F., & Lindauer, M. (2023). MASIF: Meta-learned Algorithm Selection using Implicit Fidelity Information. Transactions on Machine Learning Research. Vorabveröffentlichung online. https://openreview.net/forum?id=5aYGXxByI6
Schubert, F., Benjamins, C., Döhler, S., Rosenhahn, B., & Lindauer, M. (2023). POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning. Transactions on Machine Learning Research, 2023(4). https://doi.org/10.48550/arXiv.2205.11357
Segel, S., Graf, H., Tornede, A., Bischl, B., & Lindauer, M. (2023). Symbolic Explanations for Hyperparameter Optimization. In AutoML Conference 2023 PMLR. Vorabveröffentlichung online. https://openreview.net/forum?id=JQwAc91sg_x
Shoaib, M., Kotthoff, L., Lindauer, M., & Kant, S. (2023). AutoML: advanced tool for mining multivariate plant traits. Trends in Plant Science, 28(12), 1451-1452. https://doi.org/10.1016/j.tplants.2023.09.008
Theodorakopoulos, D., Manß, C., Stahl, F., & Lindauer, M. (2023). Green-AutoML for Plastic Litter Detection. In Proceedings of the ICLR Workshop on Tackling Climate Change with Machine Learning https://www.climatechange.ai/papers/iclr2023/53
Vermetten, D., Krejca, M. S., Lindauer, M., López-Ibáñez, M., & Malan, K. M. (2023). Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332). Dagstuhl Reports, 13(8). https://doi.org/10.4230/DagRep.13.8.46
Zoeller, M., Mauthe, F., Zeiler, P., Lindauer, M., & Huber, M. (2023). Automated Machine Learning for Remaining Useful Life Predictions. In Proceedings of the international conference on Systems Science and Engineering, Human-Machine Systems, and Cybernetics (IEEE SMC) IEEE Xplore Digital Library. Vorabveröffentlichung online. https://arxiv.org/abs/2306.12215

2022


Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M., & Hutter, F. (2022). Automated Dynamic Algorithm Configuration. Journal of Artificial Intelligence Research, 75, 1633-1699. https://doi.org/10.48550/arXiv.2205.13881, https://doi.org/10.1613/jair.1.13922
Adriaenssen, S., Biedenkapp, A., Hutter, F., Shala, G., Lindauer, M., & Awad, N. (2022). METHOD AND DEVICE FOR LEARNING A STRATEGY AND FOR IMPLEMENTING THE STRATEGY. (Patent Nr. US2022027743).
Adriaenssen, S., Biedenkapp, A., Hutter, F., Shala, G., Lindauer, M., & Awad, N. (2022). Verfahren und Vorrichtung zum Lernen einer Strategie und Betreiben der Strategie. (Patent Nr. DE102020209281).
Benjamins, C., Raponi, E., Jankovic, A., Blom, K. V. D., Santoni, M. L., Lindauer, M., & Doerr, C. (2022). PI is back! Switching Acquisition Functions in Bayesian Optimization. Vorabveröffentlichung online. https://arxiv.org/abs/2211.01455
Benjamins, C., Jankovic, A., Raponi, E., Blom, K. V. D., Lindauer, M., & Doerr, C. (2022). Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis. Beitrag in Workshop on Meta-Learning (MetaLearn 2022). https://openreview.net/forum?id=cmxtTF_IHd