Details zu Publikationen

Computational Argumentation Quality Assessment in Natural Language

verfasst von
Henning Wachsmuth, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prabhakaran, Tim Alberdingk Thijm, Graeme Hirst, Benno Stein
Abstract

Research on computational argumentation faces the problem of how to automatically assess the quality of an argument or argumentation. While different quality dimensions have been approached in natural language processing, a common understanding of argumentation quality is still missing. This paper presents the first holistic work on computational argumentation quality in natural language. We comprehensively survey the diverse existing theories and approaches to assess logical, rhetorical, and dialectical quality dimensions, and we derive a systematic taxonomy from these. In addition, we provide a corpus with 320 arguments, annotated for all 15 dimensions in the taxonomy. Our results establish a common ground for research on computational argumentation quality assessment.

Externe Organisation(en)
Bauhaus-Universität Weimar
University of Toronto
IBM Research Europe
IBM Research
Stanford University
Typ
Aufsatz in Konferenzband
Seiten
176-187
Anzahl der Seiten
12
Publikationsdatum
04.2017
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Linguistik und Sprache, Sprache und Linguistik
Elektronische Version(en)
https://doi.org/10.18653/v1/e17-1017 (Zugang: Offen)