Details zu Publikationen

Best Practices for Scientific Research on Neural Architecture Search

verfasst von
Marius Lindauer, Frank Hutter
Abstract

Finding a well-performing architecture is often tedious for both deep learning practitioners and researchers, leading to tremendous interest in the automation of this task by means of neural architecture search (NAS). Although the community has made major strides in developing better NAS methods, the quality of scientific empirical evaluations in the young field of NAS is still lacking behind that of other areas of machine learning. To address this issue, we describe a set of possible issues and ways to avoid them, leading to the NAS best practices checklist available at automl.org/nas_checklist.pdf.

Organisationseinheit(en)
Fachgebiet Maschinelles Lernen
Institut für Informationsverarbeitung
Externe Organisation(en)
Albert-Ludwigs-Universität Freiburg
Typ
Artikel
Journal
Journal of Machine Learning Research
Band
21
Anzahl der Seiten
18
ISSN
1532-4435
Publikationsdatum
11.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Artificial intelligence, Steuerungs- und Systemtechnik, Statistik und Wahrscheinlichkeit
Elektronische Version(en)
https://arxiv.org/abs/1909.02453 (Zugang: Offen)
https://jmlr.csail.mit.edu/papers/volume21/20-056/20-056.pdf (Zugang: Offen)