Best Practices for Scientific Research on Neural Architecture Search
- verfasst von
- Marius Lindauer, Frank Hutter
- Abstract
Finding a well-performing architecture is often tedious for both deep learning practitioners and researchers, leading to tremendous interest in the automation of this task by means of neural architecture search (NAS). Although the community has made major strides in developing better NAS methods, the quality of scientific empirical evaluations in the young field of NAS is still lacking behind that of other areas of machine learning. To address this issue, we describe a set of possible issues and ways to avoid them, leading to the NAS best practices checklist available at automl.org/nas_checklist.pdf.
- Organisationseinheit(en)
-
Fachgebiet Maschinelles Lernen
Institut für Informationsverarbeitung
- Externe Organisation(en)
-
Albert-Ludwigs-Universität Freiburg
- Typ
- Artikel
- Journal
- Journal of Machine Learning Research
- Band
- 21
- Anzahl der Seiten
- 18
- ISSN
- 1532-4435
- Publikationsdatum
- 11.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Software, Artificial intelligence, Steuerungs- und Systemtechnik, Statistik und Wahrscheinlichkeit
- Elektronische Version(en)
-
https://arxiv.org/abs/1909.02453 (Zugang:
Offen)
https://jmlr.csail.mit.edu/papers/volume21/20-056/20-056.pdf (Zugang: Offen)