Details zu Publikationen

Identifying Feedback Types to Augment Feedback Comment Generation

verfasst von
Maja Stahl, Henning Wachsmuth
Abstract

In the context of language learning, feedback comment generation is the task of generating hints or explanatory notes for learner texts that help understand why a part of text is erroneous. This paper presents our approach to the Feedback Comment Generation Shared Task, collocated with the 16th International Natural Language Generation Conference (INLG 2023). The approach augments the generation of feedback comments by a self-supervised identification of feedback types in a multitask-learning setting. Within the shared task, other approaches performed more effective, yet the combined modeling of feedback type classification and feedback comment generation is superior to performing feedback generation only.

Organisationseinheit(en)
Fachgebiet Maschinelle Sprachverarbeitung
Typ
Aufsatz in Konferenzband
Seiten
31-36
Publikationsdatum
09.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
Ziele für nachhaltige Entwicklung
SDG 4 – Qualitativ hochwertige Bildung
Elektronische Version(en)
https://aclanthology.org/2023.inlg-genchal.5 (Zugang: Offen)