Details zu Publikationen

ML-Plan

Automated machine learning via hierarchical planning

verfasst von
Felix Mohr, Marcel Wever, Eyke Hüllermeier
Abstract

Automated machine learning (AutoML) seeks to automatically select, compose, and parametrize machine learning algorithms, so as to achieve optimal performance on a given task (dataset). Although current approaches to AutoML have already produced impressive results, the field is still far from mature, and new techniques are still being developed. In this paper, we present ML-Plan, a new approach to AutoML based on hierarchical planning. To highlight the potential of this approach, we compare ML-Plan to the state-of-the-art frameworks Auto-WEKA, auto-sklearn, and TPOT. In an extensive series of experiments, we show that ML-Plan is highly competitive and often outperforms existing approaches.

Externe Organisation(en)
Universität Paderborn
Typ
Artikel
Journal
Machine learning
Band
107
Seiten
1495-1515
Anzahl der Seiten
21
ISSN
0885-6125
Publikationsdatum
01.09.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Artificial intelligence
Elektronische Version(en)
https://doi.org/10.1007/s10994-018-5735-z (Zugang: Offen)