Details zu Publikationen

BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters

verfasst von
Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Joshua Marben, Philipp Müller, Frank Hutter
Abstract

Hyperparameter optimization and neural architecture search can become prohibitively expensive for regular black-box Bayesian optimization because the training and evaluation of a single model can easily take several hours. To overcome this, we introduce a comprehensive tool suite for effective multi-fidelity Bayesian optimization and the analysis of its runs. The suite, written in Python, provides a simple way to specify complex design spaces, a robust and efficient combination of Bayesian optimization and HyperBand, and a comprehensive analysis of the optimization process and its outcomes.

Externe Organisation(en)
Albert-Ludwigs-Universität Freiburg
Robert Bosch GmbH
Typ
Preprint
Publikationsdatum
16.08.2019
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Elektronische Version(en)
https://arxiv.org/pdf/1908.06756 (Zugang: Unbekannt)