Efficient Statement Identification for Automatic Market Forecasting
- verfasst von
- Henning Wachsmuth, Peter Prettenhofer, Benno Stein
- Abstract
Strategic business decision making involves the analysis of market forecasts. Today, the identification and aggregation of relevant market statements is done by human experts, often by analyzing documents from the World Wide Web. We present an efficient information extraction chain to automate this complex natural language processing task and show results for the identification part. Based on time and money extraction, we identify sentences that represent statements on revenue using support vector classification. We provide a corpus with German online news articles, in which more than 2,000 such sentences are annotated by domain experts from the industry. On the test data, our statement identification algorithm achieves an overall precision and recall of 0.86 and 0.87 respectively.
- Externe Organisation(en)
-
Universität Paderborn
Bauhaus-Universität Weimar
- Typ
- Aufsatz in Konferenzband
- Seiten
- 1128-1136
- Anzahl der Seiten
- 9
- Publikationsdatum
- 2010
- Publikationsstatus
- Veröffentlicht
- ASJC Scopus Sachgebiete
- Sprache und Linguistik, Theoretische Informatik und Mathematik, Linguistik und Sprache
- Elektronische Version(en)
-
https://aclanthology.org/C10-1127 (Zugang:
Offen)