Details zu Publikationen

Ensembles of evolved nested dichotomies for classification

verfasst von
Marcel Wever, Felix Mohr, Eyke Hüllermeier
Abstract

In multinomial classification, reduction techniques are commonly used to decompose the original learning problem into several simpler problems. For example, by recursively bisecting the original set of classes, so-called nested dichotomies define a set of binary classification problems that are organized in the structure of a binary tree. In contrast to the existing one-shot heuristics for constructing nested dichotomies and motivated by recent work on algorithm configuration, we propose a genetic algorithm for optimizing the structure of such dichotomies. A key component of this approach is the proposed genetic representation that facilitates the application of standard genetic operators, while still supporting the exchange of partial solutions under recombination. We evaluate the approach in an extensive experimental study, showing that it yields classifiers with superior generalization performance.

Externe Organisation(en)
Heinz Nixdorf Institut (HNI)
Universität Paderborn
Typ
Aufsatz in Konferenzband
Seiten
561-568
Anzahl der Seiten
8
Publikationsdatum
02.07.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Angewandte Informatik, Software, Theoretische Informatik und Mathematik
Elektronische Version(en)
https://doi.org/10.1145/3205455.3205562 (Zugang: Geschlossen)