Details zu Publikationen

MO-SMAC: Multi-objective Sequential Model-based Algorithm Configuration

verfasst von
Jeroen Rook, Carolin Benjamins, Jakob Bossek, Heike Trautmann, Holger Hoos, Marius Lindauer
Abstract

Automated algorithm configuration aims at finding well-performing parameter configurations for a given problem, and it has proven to be effective within many AI domains, including evolutionary computation. Initially, the focus was on excelling in one performance objective, but, in reality, most tasks have a variety of (conflicting) objectives. The surging demand for trustworthy and resource-efficient AI systems makes this multi-objective perspective even more prevalent. We propose a new general-purpose multi-objective automated algorithm configurator by extending the widely-used SMAC framework. Instead of finding a single configuration, we search for a non-dominated set that approximates the actual Pareto set. We propose a pure multi-objective Bayesian Optimisation approach for obtaining promising configurations by using the predicted hypervolume improvement as acquisition function. We also present a novel intensification procedure to efficiently handle the selection of configurations in a multi-objective context. Our approach is empirically validated and compared across various configuration scenarios in four AI domains, demonstrating superiority over baseline methods, competitiveness with MO-ParamILS on individual scenarios and an overall best performance.

Organisationseinheit(en)
Fachgebiet Maschinelles Lernen
Institut für Künstliche Intelligenz
Forschungszentrum L3S
Externe Organisation(en)
University of Twente
Universität Paderborn
Leiden University
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
University of British Columbia
Typ
Artikel
Journal
Evolutionary computation
Band
25
Seiten
1-25
ISSN
1063-6560
Publikationsdatum
10.03.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
Elektronische Version(en)
https://doi.org/10.1162/evco_a_00371 (Zugang: Geschlossen)