Zeige Ergebnisse 1 -
13
von 13
2024
Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L.
, Segel, S., Lindauer, M., & Eggensperger, K. (2024).
AMLTK: A Modular AutoML Toolkit in Python.
The Journal of Open Source Software,
9(100), Artikel 6367.
https://doi.org/10.21105/joss.06367
Giovanelli, J.
, Tornede, A., Tornede, T., & Lindauer, M. (2024).
Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning. In M. Wooldridge, J. Dy, & S. Natarajan (Hrsg.),
Proceedings of the 38th conference on AAAI (S. 12172-12180). (Proceedings of the AAAI Conference on Artificial Intelligence; Band 38, Nr. 11).
https://doi.org/10.48550/arXiv.2309.03581,
https://doi.org/10.1609/aaai.v38i11.29106
Lindauer, M., Karl, F., Klier, A., Moosbauer, J., Tornede, A., Müller, A., Hutter, F., Feurer, M., & Bischl, B. (2024). Position Paper: A Call to Action for a Human-Centered AutoML Paradigm. In Proceedings of the international conference on machine learning Vorabveröffentlichung online.
Tornede, A., Deng, D., Eimer, T., Giovanelli, J.
, Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H., & Lindauer, M. (2024).
AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks.
Transactions on Machine Learning Research. Vorabveröffentlichung online.
https://doi.org/10.48550/arXiv.2306.08107
2023
Eimer, T., Lindauer, M., & Raileanu, R. (2023).
Extended Abstract: Hyperparameters in Reinforcement Learning and How To Tune Them. In
The 16th European Workshop on Reinforcement Learning (EWRL 2023) Vorabveröffentlichung online.
https://openreview.net/forum?id=N3IDYxLxgtW
Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M.
, Lindauer, M., Nardi, L., & Hutter, F. (2023).
PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning. In
Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS) Vorabveröffentlichung online.
https://doi.org/10.48550/arXiv.2306.12370
Mohan, A., Benjamins, C., Wienecke, K.
, Dockhorn, A., & Lindauer, M. (2023).
AutoRL Hyperparameter Landscapes. In
Conference Proceedings - Second International Conference on Automated Machine Learning (Proceedings of Machine Learning Research; Band 228). PMLR.
https://doi.org/10.48550/arXiv.2304.02396
Mohan, A., Benjamins, C., Wienecke, K.
, Dockhorn, A., & Lindauer, M. (Angenommen/im Druck).
Extended Abstract: AutoRL Hyperparameter Landscapes. In
The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=4Zu0l5lBgc
Segel, S., Graf, H., Tornede, A., Bischl, B.
, & Lindauer, M. (2023).
Symbolic Explanations for Hyperparameter Optimization. In
AutoML Conference 2023 PMLR. Vorabveröffentlichung online.
https://openreview.net/forum?id=JQwAc91sg_x
2022
Hvarfner, C., Stoll, D., Souza, A. L. F.
, Lindauer, M., Hutter, F., & Nardi, L. (2022).
π BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In
Proceedings of the International conference on Learning Representation (ICLR) https://doi.org/10.48550/arXiv.2204.11051
Mallik, N., Hvarfner, C., Stoll, D., Janowski, M., Bergman, E.
, Lindauer, M. T., Nardi, L., & Hutter, F. (2022).
PriorBand: HyperBand + Human Expert Knowledge. In
2022 NeurIPS Workshop on Meta Learning (MetaLearn) https://openreview.net/forum?id=ds21dwfBBH
Moosbauer, J., Casalicchio, G.
, Lindauer, M., & Bischl, B. (2022).
Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution. Vorabveröffentlichung online.
https://doi.org/10.48550/arXiv.2206.05447