Interactive and Explainable Human-Centered AutoML

Making AutoML systems more human-centered by enabling interactivity and explainability.

Funding Agency

Trust and interactivity are key factors in the future development and use of automated machine learning (AutoML), supporting developers and researchers in determining powerful task-specific machine learning pipelines, including pre-processing, predictive algorithm, their hyperparameters and -if applicable- the architecture design of deep neural networks. Although AutoML is ready for its prime time, democratization of machine learning via AutoML is still not achieved. In contrast to previously purely automation-centered approaches, ixAutoML is designed with human users at its heart in several stages. The foundation of trustful use of AutoML will be based on explanations of its results and processes. To this end, we aim for: (i) Explaining static effects of design decisions in ML pipelines optimized by state-of-the-art AutoML systems. (ii) Explaining dynamic AutoML policies for temporal aspects of dynamically adapted hyperparameters while ML models are trained. These explanations will be the base for allowing interactions allowing to combine human intuition and generalization capabilities for complex systems, and efficiency of systematic optimization approaches for AutoML.

Lead at LUHAI: Prof. Lindauer

Funding Program:  ERC Starting Grant

Project Period: Dec 2022 - Nov 2027

Publications

Zeige Ergebnisse 1 - 13 von 13

2024


Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M., & Eggensperger, K. (2024). AMLTK: A Modular AutoML Toolkit in Python. The Journal of Open Source Software, 9(100), Artikel 6367. https://doi.org/10.21105/joss.06367
Giovanelli, J., Tornede, A., Tornede, T., & Lindauer, M. (2024). Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning. In M. Wooldridge, J. Dy, & S. Natarajan (Hrsg.), Proceedings of the 38th conference on AAAI (S. 12172-12180). (Proceedings of the AAAI Conference on Artificial Intelligence; Band 38, Nr. 11). https://doi.org/10.48550/arXiv.2309.03581, https://doi.org/10.1609/aaai.v38i11.29106
Lindauer, M., Karl, F., Klier, A., Moosbauer, J., Tornede, A., Müller, A., Hutter, F., Feurer, M., & Bischl, B. (2024). Position Paper: A Call to Action for a Human-Centered AutoML Paradigm. In Proceedings of the international conference on machine learning Vorabveröffentlichung online.
Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H., & Lindauer, M. (2024). AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks. Transactions on Machine Learning Research. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2306.08107

2023


Eimer, T., Lindauer, M., & Raileanu, R. (2023). Extended Abstract: Hyperparameters in Reinforcement Learning and How To Tune Them. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) Vorabveröffentlichung online. https://openreview.net/forum?id=N3IDYxLxgtW
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Hyperparameters in Reinforcement Learning and How to Tune Them. In ICML'23: Proceedings of the 40th International Conference on Machine Learning (S. 9104–9149). Artikel 366 https://doi.org/10.48550/arXiv.2306.01324, https://doi.org/10.5555/3618408.3618774
Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., & Hutter, F. (2023). PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning. In Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS) Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2306.12370
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (2023). AutoRL Hyperparameter Landscapes. In Conference Proceedings - Second International Conference on Automated Machine Learning (Proceedings of Machine Learning Research; Band 228). PMLR. https://doi.org/10.48550/arXiv.2304.02396
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (Angenommen/im Druck). Extended Abstract: AutoRL Hyperparameter Landscapes. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=4Zu0l5lBgc
Segel, S., Graf, H., Tornede, A., Bischl, B., & Lindauer, M. (2023). Symbolic Explanations for Hyperparameter Optimization. In AutoML Conference 2023 PMLR. Vorabveröffentlichung online. https://openreview.net/forum?id=JQwAc91sg_x

2022


Hvarfner, C., Stoll, D., Souza, A. L. F., Lindauer, M., Hutter, F., & Nardi, L. (2022). π BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In Proceedings of the International conference on Learning Representation (ICLR) https://doi.org/10.48550/arXiv.2204.11051
Mallik, N., Hvarfner, C., Stoll, D., Janowski, M., Bergman, E., Lindauer, M. T., Nardi, L., & Hutter, F. (2022). PriorBand: HyperBand + Human Expert Knowledge. In 2022 NeurIPS Workshop on Meta Learning (MetaLearn) https://openreview.net/forum?id=ds21dwfBBH
Moosbauer, J., Casalicchio, G., Lindauer, M., & Bischl, B. (2022). Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2206.05447