Green AutoML for Driver Assistance

Design of a holisticm, carbon-efficient system for drive assistance systems.

Funding Agency

Nowadays, AI applications can be found in many devices used in daily life, which means that the average energy consumption of a person is constantly increasing. Due to the scarcity of resources, it is thus increasingly important to also develop AI applications in a resource-saving manner. However, in this context, a major challenge includes analyzing large amounts of data with security relevance. Due to its complexity, deep learning, frequently used for this purpose, usually requires high energy consumption and thus generates a large ecological footprint. In order to prevent this footprint from becoming too large, resource-efficient AI applications are absolutely necessary. As an example, in our project, we study driver assistance systems, which improve the safety, comfort, and economy of driving.

The aim of the GreenAutoML4FAS project is to design a holistic system consisting of hardware, efficient coding and transmission of data and models, and dynamic and adaptive software in a resource-efficient manner. To this end, we will develop new resource-efficient AutoML systems that efficiently support developers in the entire AI development cycle. Exemplarily, the focus here is on driver assistance systems. Combining efficient algorithms, communication, and hardware in this area will lead to significant energy savings. Thus, the holistic concept developed in the project will also be transferred to other areas in which AI or deep learning is used as a machine learning method.

Lead at LUHAI: Prof. Lindauer

Funding Program: AI Beacons for the Environment, Nature and Resources, Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz

Funding Reference: 67KI32007A

Project Period:  March 2023 to February 2026

Project Partners:

  • Institute of Artificial Intelligence (Prof. Dr. Marius Lindauer)
  • Institute for Information Processing (Prof. Dr. Bodo Rosenhahn, Prof. Dr. Jörn Ostermann)
  • Institute of Microelectronic Systems (Prof. Dr. Holger Blume)
  • VISCODA GmbH (Dr. Hellward Broszio)

Project Executing Agency: ZUG

Publications

2025

  • Neutatz, Lindauer, Abedjan. "[Experiments \& Analysis] How Green is AutoML for Tabular Data?". Proceedings of EDBT 2025

2024

2023